From 987b2fe7c064bc2e7927adca682b8dcd3cb9d44a Mon Sep 17 00:00:00 2001 From: zeramorphic <50671761+zeramorphic@users.noreply.github.com> Date: Mon, 19 Feb 2024 11:57:49 +0000 Subject: [PATCH] Lectures 23 --- iii/lc/02_measurable_cardinals.tex | 110 +++++++++++++++++++++++++++++ 1 file changed, 110 insertions(+) diff --git a/iii/lc/02_measurable_cardinals.tex b/iii/lc/02_measurable_cardinals.tex index 1a32b46..19980ea 100644 --- a/iii/lc/02_measurable_cardinals.tex +++ b/iii/lc/02_measurable_cardinals.tex @@ -423,3 +423,113 @@ \subsection{Reflection} In particular, \[ \mathsf{ZFC} + \mathsf{IC} <_{\Con} \mathsf{ZFC} + \mathsf{WCC} \] Note that in the proof that strongly compact cardinals are measurable, we used a language with \( 2^\kappa \)-many symbols. + +\subsection{Ultrapowers of the universe} +In order to avoid proper classes, we will consider ultrapowers of particular set universes. +Later, we will briefly explain how all of this could have been done in a proper class universe such as \( \mathrm{V} \). +For convenience, we will assume that \( \kappa < \lambda \) where \( \kappa \) is measurable and \( \lambda \) is inaccessible, so \( \mathrm{V}_\lambda \vDash \mathsf{ZFC} + \mathsf{MC} \). +We will take the ultrapower of \( \mathrm{V}_\lambda \). + +Let \( U \) be a \( \kappa \)-complete nonprincipal ultrafilter on \( \kappa \), and form the ultrapower of \( \mathrm{V}_\lambda \), consisting of equivalence classes of functions \( f : \kappa \to \mathrm{V}_\lambda \) where \( f \sim g \) when \( \qty{\alpha \mid f(\alpha) = g(\alpha)} \in U \). +\[ \faktor{{\mathrm{V}_\lambda}^\kappa}{U} = \qty{[f] \mid f : \kappa \to \mathrm{V}_\lambda} \] +The membership relation on the ultrapower is given by +\[ [f] \mathrel{E} [g] \leftrightarrow \qty{\alpha \mid f(\alpha) \in g(\alpha)} \in U \] +We have an embedding \( \ell \) from \( \mathrm{V}_\lambda \) into the ultrapower by mapping \( x \in \mathrm{V}_\lambda \) to the equivalence class of its constant function \( c_x : \kappa \to \mathrm{V}_\lambda \). +This is an elementary embedding by \L{}o\'s' theorem. +Hence +\[ \qty(\mathrm{V}_\lambda, \in) \equiv \qty(\faktor{{\mathrm{V}_\lambda}^\kappa}{U}) \] +so they both model \( \mathsf{ZFC} + \mathsf{MC} \), and in particular, \( [c_{\kappa}] \) is a measurable cardinal. +\begin{remark} + \begin{enumerate} + \item Suppose \( \faktor{{\mathrm{V}_\lambda}^\kappa}{U} \vDash [f] \text{ is an ordinal} \). + By \L{}o\'s' theorem, + \[ X = \qty{\alpha \mid f(\alpha) \text{ is an ordinal}} \in U \] + We can define + \[ f'(\alpha) = \begin{cases} + f(\alpha) & \text{if } \alpha \in X \\ + 0 & \text{otherwise} + \end{cases} \] + Note that \( f \sim f' \), so \( [f] = [f'] \). + So without loss of generality, we can assume \( f \) is a function into \( \mathrm{Ord} \cap \lambda = \lambda \), so \( f : \kappa \to \lambda \). + Since \( \lambda \) is inaccessible, \( f \) cannot be cofinal, so there is \( \gamma < \lambda \) such that \( f : \kappa \to \gamma \). + Note also that, for example, we can define \( f + 1 \) by + \[ (f + 1)(\alpha) = f(\alpha) + 1 \] + so + \[ \qty{\alpha \mid (f+1)(\alpha) \text{ is the successor of } f(\alpha)} = \kappa \in U \] + hence by \L{}o\'s' theorem, \( [f + 1] \) is the successor of \( [f] \). + \item If \( f : \kappa \to \mathrm{V}_\lambda \) is arbitrary, the set + \[ \qty{\rank f(\alpha) \mid \alpha \in \kappa} \] + cannot be cofinal in \( \lambda \), so there is \( \gamma < \lambda \) such that \( f \in \mathrm{V}_\gamma \). + However, the equivalence class \( [f] \) is unbounded in \( \mathrm{V}_\lambda \). + \item Given \( f \), by (ii) we may assume \( f \in \mathrm{V}_\gamma \) for some \( \gamma < \lambda \). + If \( [g] \mathrel{E} [f] \), then + \[ X = \qty{\alpha \mid g(\alpha) \in f(\alpha)} \in U \] + Now we can define + \[ g'(\alpha) = \begin{cases} + g(\alpha) & \text{if } \alpha \in X \\ + 0 & \text{otherwise} + \end{cases} \] + Then \( g \sim g' \) so \( [g] = [g'] \), and \( g' \in \mathrm{V}_\gamma \). + Therefore, + \[ \abs{\qty{[g] \mid [g] \mathrel{E} [f]}} \leq \abs{\mathrm{V}_\gamma} < \lambda \] + \end{enumerate} +\end{remark} +\begin{lemma} + \( \faktor{{\mathrm{V}_\lambda}^\kappa}{U} \) is \( E \)-well-founded. +\end{lemma} +\begin{proof} + Suppose not, so let \( \qty{[f_n] \mid n \in \mathbb N} \) be a strictly decreasing sequence, so + \[ [f_{n+1}] \mathrel{E} [f_n] \] + By definition, + \[ X_n = \qty{\alpha \mid f_{n+1}(\alpha) \in f_n(\alpha)} \in U \] + But as \( U \) is \( \kappa \)-complete, + \[ \bigcap_{n \in \mathbb N} X_n \in U \] + In particular, there must be an element \( \alpha \in \bigcap_{n \in \mathbb N} X_n \). + Hence, \( f_n(\alpha) \) is an \( \in \)-decreasing sequence in \( \mathrm{V}_\lambda \), which is a contradiction. +\end{proof} +Note that we only used \( \aleph_1 \)-completeness of \( U \). + +We can take the Mostowski collapse to produce a transitive set \( M \) such that +\[ \pi : \qty(\faktor{{\mathrm{V}_\lambda}^\kappa}{U}, E) \cong (M, \in) \] +Combining \( \ell \) and \( \pi \), we obtain +\[ j = \pi \circ \ell : (\mathrm{V}_\lambda, \in) \to (M, \in) \] +given by +\[ j(x) = \pi(\ell(x)) = \pi([c_x]) \] +For convenience, will write \( (f) \) to abbreviate \( \pi([f]) \), so \( j(x) = (c_x) \). +\begin{lemma} + \( M \subseteq \mathrm{V}_\lambda \). +\end{lemma} +\begin{proof} + Note that because \( \lambda \) is inaccessible, \( \mathrm{V}_\lambda = \mathrm{H}_\lambda \), where + \[ \mathrm{H}_\lambda = \qty{x \mid \abs{\operatorname{tcl}(x)} < \lambda} \] + Since \( M \) is transitive, if \( \abs{x} < \lambda \) for each \( x \in M \), then \( M \subseteq \mathrm{H}_\lambda \). + But remark (iii) above shows precisely what is required. +\end{proof} +\begin{lemma} + \( \mathrm{Ord} \cap M = \lambda \). +\end{lemma} +\begin{proof} + Under the elementary embedding \( j \), ordinals in \( \mathrm{V}_\lambda \) are mapped to ordinals in \( M \). + So \( j \) restricts to an order-preserving embedding from \( \lambda \) into a subset of \( \lambda \). + Thus this embedding is unbounded, and therefore by transitivity, \( \mathrm{Ord} \cap M = \lambda \). +\end{proof} +\begin{lemma} + \( \eval{j}_{\mathrm{V}_\kappa} = \id \), so in particular, \( \mathrm{V}_\kappa \subseteq M \). +\end{lemma} +\begin{proof} + We show this by \( \in \)-induction on \( \mathrm{V}_\kappa \). + Suppose that \( x \in \mathrm{V}_\kappa \) is such that for all \( y \in x \), \( j(y) = y \). + For any \( y \in x \), by elementarity, \( j(y) \in j(x) \), but \( j(y) = y \) so \( y \in j(x) \) as required. + For the converse, suppose \( y \in j(x) \). + Then define \( f \) such that \( y = (f) \), so \( (f) \in (c_x) \). + Hence + \[ X = \qty{\alpha \mid f(\alpha) \in c_x(\alpha)} = \qty{\alpha \mid f(\alpha) \in x} \in U \] + But + \[ \qty{\alpha \mid f(\alpha) \in x} = \bigcup_{z \in x} \qty{\alpha \mid f(\alpha) = z} \] + This is a union of \( \abs{x} \)-many sets. + By \( \kappa \)-completeness, there must be some \( z \in x \) such that + \[ \qty{\alpha \mid f(\alpha) = z} \in U \] + Hence \( f \sim c_z \). + Therefore, \( (f) = j(z) \), and by the inductive hypothesis, \( j(z) = z \). + Hence \( y \in x \). +\end{proof}