diff --git a/iii/commalg/02_tensor_products.tex b/iii/commalg/02_tensor_products.tex index 3a05f4c..9859d22 100644 --- a/iii/commalg/02_tensor_products.tex +++ b/iii/commalg/02_tensor_products.tex @@ -638,7 +638,7 @@ \subsection{Restriction and extension of scalars} M \otimes_R N &\simeq N \otimes_R M \\ (M \otimes_R N) \otimes_R N' &\simeq M \otimes_R (N \otimes_R N') \\ (M \otimes_R N) \otimes_S M' &\simeq M \otimes_S (N \otimes_R M') \\ - M \otimes_R \qty(\bigoplus_i N_i) &\simeq \bigoplus_i (M \otimes N_i) + M \otimes_R \qty(\bigoplus_i N_i) &\simeq \bigoplus_i (M \otimes_R N_i) \end{align*} \end{proposition} Heuristically, the tensor products in the above isomorphisms always operate over the largest possible ring: \( S \) if both operands are \( S \)-modules, else \( R \). @@ -661,5 +661,176 @@ \subsection{Restriction and extension of scalars} \[ S \otimes_R (N \otimes_R N') \simeq (S \otimes_R N) \otimes_R N' \simeq (S \otimes_R N) \otimes_S (S \otimes_R N') \] \end{proof} \begin{example} - \[ \mathbb C \otimes_{\mathbb R} \qty(\mathbb R^\ell \otimes_{\mathbb R} \mathbb R^k) \simeq (\mathbb C \otimes_{\mathbb R} \mathbb R^\ell) \otimes_C \mathbb R^k \simeq \mathbb C^\ell \otimes_{\mathbb C} \mathbb C^k \simeq \mathbb C^{\ell k} \] + \[ \mathbb C \otimes_{\mathbb R} \qty(\mathbb R^\ell \otimes_{\mathbb R} \mathbb R^k) \simeq (\mathbb C \otimes_{\mathbb R} \mathbb R^\ell) \otimes_{\mathbb C} (\mathbb C \otimes_{\mathbb R} \mathbb R^k) \simeq \mathbb C^\ell \otimes_{\mathbb C} \mathbb C^k \simeq \mathbb C^{\ell k} \] + By induction, one can see that + \[ S \otimes_R (N_1 \otimes_R \dots \otimes_R N_\ell) = (S \otimes_R N_1) \otimes_S \dots \otimes_S (S \otimes_R N_\ell) \] \end{example} + +\subsection{Extension of scalars on morphisms} +Let \( f : N \to N' \) be an \( R \)-linear map, and \( M \) be an \( S \)-module. +Then the map +\[ \id_M \otimes f : M \otimes_R \to M \otimes_R N' \] +is \( S \)-linear. +Indeed, +\[ (\id_M \otimes f)(s(m \otimes n)) = \id_M sm \otimes f(n) = s(m \otimes f(n)) = s((\id_M \otimes f)(m \otimes n)) \] +\begin{example} + Let \( T : \mathbb R^n \to \mathbb R^\ell \) be \( R \)-linear, and use bases \( e_1, \dots, e_n \) and \( f_1, \dots, f_\ell \). + Then + \[ \id_{\mathbb C} \otimes T : \mathbb C \otimes_{\mathbb R} \mathbb R^n \to \mathbb C \otimes_{\mathbb R} \mathbb R^\ell \] + is given by + \[ (\id_{\mathbb C} \otimes T)(1 \otimes e_i) = 1 \otimes T(e_i) = 1 \otimes \sum_{j=1}^\ell [T]_{ji} \cdot f_j = \sum_{j=1}^\ell [T]_{ji} (1 \otimes f_j) \] + This shows that the matrix \( [\id_{\mathbb C} \otimes T] \) has all real elements, and is the same as the matrix \( [T] \). +\end{example} + +\subsection{Extension of scalars in algebras} +Let \( A, B \) be \( R \)-algebras. +Then the module \( A \otimes_R B \) is also an \( R \)-algebra. +Furthermore, can see that \( A \otimes_R B \) is an \( A \)-algebra and a \( B \)-algebra by the maps \( a \mapsto a \otimes 1 \) and \( b \mapsto 1 \otimes b \). +\begin{example} + Consider \( R[X_1, \dots, X_n] \) and \( f : R \to S \). + Then + \[ \varphi : S \otimes_R R[X_1, \dots, X_n] \similarrightarrow S[X_1, \dots, X_n] \] + as \( S \)-algebras. + Indeed, \( \varphi \) already exists as an isomorphism of \( S \)-modules given by + \[ \varphi(s \otimes p) = sp \] + and one can verify that unity and multiplication are preserved. + Further, + \[ S \otimes \qty(\faktor{R[X_1, \dots, X_n]}{I}) \simeq \faktor{S[X_1, \dots, X_n]}{I^e} \] +\end{example} +\begin{proposition} + Let \( A \) be an \( R \)-algebra and \( B \) be an \( S \)-algebra. + Then + \[ A \otimes_R B \simeq (A \otimes_R S) \otimes_S R \] + as \( S \)-algebras. +\end{proposition} +\begin{proposition} + Let \( A, B \) be \( R \)-algebras. + Then + \[ S \otimes_R (A \otimes_R B) \simeq (S \otimes_R A) \otimes_S (S \otimes_R B) \] + as \( S \)-algebras. +\end{proposition} +The proofs are omitted, but trivial. + +\subsection{Exactness properties of the tensor product} +Let \( M \) be an \( R \)-module. +There is a functor +\[ T_M : \mathbf{Mod}_R \to \mathbf{Mod}_R \] +from the category of \( R \)-modules to itself given by +\[ T_M(N) = M \otimes_R N;\quad T_M(N \xrightarrow f N') = \id_M \otimes f \] +We intend to show that if +% https://q.uiver.app/#q=WzAsNCxbMCwwLCJBIl0sWzEsMCwiQiJdLFsyLDAsIkMiXSxbMywwLCIwIl0sWzAsMSwiZiJdLFsxLDIsImciXSxbMiwzXV0= +\[\begin{tikzcd} + A & B & C & 0 + \arrow["f", from=1-1, to=1-2] + \arrow["g", from=1-2, to=1-3] + \arrow[from=1-3, to=1-4] +\end{tikzcd}\] +is an exact sequence of \( R \)-modules, then +% https://q.uiver.app/#q=WzAsNCxbMCwwLCJNIFxcb3RpbWVzX1IgQSJdLFsxLDAsIk0gXFxvdGltZXNfUiBCIl0sWzIsMCwiTSBcXG90aW1lc19SIEMiXSxbMywwLCIwIl0sWzAsMSwiXFxpZF9NIFxcb3RpbWVzIGYiXSxbMSwyLCJcXGlkX00gXFxvdGltZXMgZyJdLFsyLDNdXQ== +\[\begin{tikzcd} + {M \otimes_R A} & {M \otimes_R B} & {M \otimes_R C} & 0 + \arrow["{T_M(f)}", from=1-1, to=1-2] + \arrow["{T_M(g)}", from=1-2, to=1-3] + \arrow[from=1-3, to=1-4] +\end{tikzcd}\] +is also an exact sequence. +This shows that \( T_M \) is a \emph{right exact} functor. +\begin{definition} + Let \( Q, P \) be \( R \)-modules. + Then + \[ \Hom_R(Q, P) = \qty{f : Q \to P \mid f \text{ is } R\text{-linear}} \] + This is also an \( R \)-module: if \( \varphi \in \Hom_R(Q, P) \), + \[ (r \cdot \varphi)(q) = r \cdot \varphi(q) \] +\end{definition} +\begin{definition} + Let \( Q, P \) be \( R \)-modules. + Then \( \Hom_R(Q, -) \) and \( \Hom_R(-, P) \) are functors \( \mathbf{Mod}_R \to \mathbf{Mod}_R \), with action on morphisms \( f : N' \to N \) given by + \[ \Hom_R(Q, f)(\varphi) = f \circ \varphi = f_\star(\varphi) : \Hom_R(Q, N') \to \Hom_R(Q, N') \] + and + \[ \Hom_R(f, P)(\varphi) = \varphi \circ f = f^\star(\varphi) : \Hom_R(N, Q) \to \Hom_R(N', Q) \] +\end{definition} +\begin{proposition} + Suppose + \[\begin{tikzcd} + 0 & A & B & C + \arrow[from=1-1, to=1-2] + \arrow["f", from=1-2, to=1-3] + \arrow["g", from=1-3, to=1-4] + \end{tikzcd}\] + is exact. + Then, so is + \[\begin{tikzcd} + 0 & {\Hom_R(Q, A)} & {\Hom_R(Q, B)} & {\Hom_R(Q, C)} + \arrow[from=1-1, to=1-2] + \arrow["{f_\star}", from=1-2, to=1-3] + \arrow["{g_\star}", from=1-3, to=1-4] + \end{tikzcd}\] + Thus, the covariant hom-functor is \emph{left exact}. +\end{proposition} +\begin{proposition} + Suppose + \[\begin{tikzcd} + A & B & C & 0 + \arrow["f", from=1-1, to=1-2] + \arrow["g", from=1-2, to=1-3] + \arrow[from=1-3, to=1-4] + \end{tikzcd}\] + is exact. + Then, so is + \[\begin{tikzcd} + 0 & {\Hom_R(C, P)} & {\Hom_R(B, P)} & {\Hom_R(A, P)} + \arrow[from=1-1, to=1-2] + \arrow["{g^\star}", from=1-2, to=1-3] + \arrow["{f^\star}", from=1-3, to=1-4] + \end{tikzcd}\] + Thus, the contravariant hom-functor is also left-exact. +\end{proposition} +\begin{lemma} + Consider a sequence of \( R \)-modules + \[\begin{tikzcd} + A & B & C + \arrow["f", from=1-1, to=1-2] + \arrow["g", from=1-2, to=1-3] + \end{tikzcd}\] + Suppose that for each \( R \)-module \( P \), + \[\begin{tikzcd} + {\Hom_R(C, P)} & {\Hom_R(B, P)} & {\Hom_R(A, P)} + \arrow["{g^\star}", from=1-1, to=1-2] + \arrow["{f^\star}", from=1-2, to=1-3] + \end{tikzcd}\] + is exact. + Then the original sequence + \[\begin{tikzcd} + A & B & C + \arrow["f", from=1-1, to=1-2] + \arrow["g", from=1-2, to=1-3] + \end{tikzcd}\] + is exact. +\end{lemma} +\begin{proof} + First, take \( P = C \). + By hypothesis, the following sequence is exact. + \[\begin{tikzcd} + {\Hom_R(C, C)} & {\Hom_R(B, C)} & {\Hom_R(A, C)} + \arrow["{g^\star}", from=1-1, to=1-2] + \arrow["{f^\star}", from=1-2, to=1-3] + \end{tikzcd}\] + Consider + \[ \id_C \mapsto \id_C \circ g \mapsto \id_C \circ g \circ f \] + By exactness, \( \id_C \) must be mapped to zero under \( f^\star \circ g^\star \), so \( g \circ f = 0 \). + Hence \( \Im f \subseteq \ker g \). + + Now, take \( P = \faktor{B}{\Im f} = \coker f \). + \[\begin{tikzcd} + {\Hom_R\qty(C, \faktor{B}{\Im f})} & {\Hom_R\qty(B, \faktor{B}{\Im f})} & {\Hom_R\qty(A, \faktor{B}{\Im f})} + \arrow["{g^\star}", from=1-1, to=1-2] + \arrow["{f^\star}", from=1-2, to=1-3] + \end{tikzcd}\] + Let \( h : B \to \faktor{B}{\Im f} \) be the quotient map. + Then, + \[ f^\star(h) = h \circ f;\quad h(f(x)) = 0 \] + Thus by exactness, \( h \) has a preimage \( e : C \to \faktor{B}{\Im f} \). + Then \( g^\star(e) = e \circ g = h \), so \( \ker g \subseteq \ker h = \Im f \), giving the reverse inclusion. +\end{proof} +By the universal property of the tensor product, +\[ \Hom_R(M \otimes_R N, L) \simeq \operatorname{Bilin}_R(M \times N, L) \simeq \Hom_R(N, \Hom_R(M, L)) \]