diff --git a/iii/commalg/02_tensor_products.tex b/iii/commalg/02_tensor_products.tex index c5566a8..2967043 100644 --- a/iii/commalg/02_tensor_products.tex +++ b/iii/commalg/02_tensor_products.tex @@ -626,10 +626,16 @@ \subsection{Restriction and extension of scalars} Then \[ M \otimes_R N \simeq M \otimes_S (S \otimes_R N) \] as \( S \)-modules, where - \[ m \otimes n \mapsto m \otimes (1 \otimes n);\quad m \otimes (s \otimes n) \mapsto sm \otimes n \] + \[ m \otimes n \mapsto m \otimes (1 \otimes n);\quad sm \otimes n \mapsfrom m \otimes (s \otimes n) \] \end{proposition} \begin{proof} - %TODO/ES1 + The map \( (m, n) \mapsto m \otimes (1 \otimes n) \) is \( R \)-bilinear, so the map \( f \) mapping \( m \otimes n \) to \( m \otimes (1 \otimes n) \) is well-defined as a map of \( R \)-modules. + We show it is \( S \)-linear on pure tensors. + \[ f(s(m \otimes n)) = f(sm \otimes n) = sm \otimes (1 \otimes n) = s (m \otimes (1 \otimes n)) = s f(m \otimes n) \] + For a fixed \( m \in M \), the map \( s \otimes n \mapsto sm \otimes n \) is well-defined and \( S \)-linear. + This collection of maps is \( S \)-linear in its parameter \( m \), so we obtain an \( S \)-bilinear map \( (m, s \otimes n) \mapsto sm \otimes n \). + Hence, we obtain a map \( g \) mapping \( m \otimes (s \otimes n) \) to \( sm \otimes n \), as desired. + One can easily check that \( f \) and \( g \) are inverses on pure tensors. \end{proof} \begin{proposition} Let \( M, M' \) be \( S \)-modules and \( N, N' \) be \( R \)-modules. @@ -871,7 +877,8 @@ \subsection{Exactness properties of the tensor product} \end{proof} By the universal property of the tensor product, \[ \Hom_R(M \otimes_R N, L) \simeq \operatorname{Bilin}_R(M \times N, L) \simeq \Hom_R(N, \Hom_R(M, L)) \] -mapping \( \varphi \mapsto n \mapsto m \mapsto \varphi(m \otimes n) \) and \( \varphi \mapsto m \otimes n \mapsto \varphi(m)(n) \). +given by +\[ \varphi \mapsto (n \mapsto m \mapsto \varphi(m \otimes n)) ;\quad (m \otimes n \mapsto \varphi(m)(n)) \mapsfrom \varphi \] This bijection is \emph{natural}, in the sense that many commutative diagrams involving them will commute. \begin{proposition} Let \( M \) be an \( R \)-module. diff --git a/iii/commalg/03_localisation.tex b/iii/commalg/03_localisation.tex index c408f13..fe8a170 100644 --- a/iii/commalg/03_localisation.tex +++ b/iii/commalg/03_localisation.tex @@ -2,7 +2,7 @@ \subsection{Definitions} \begin{definition} A \emph{multiplicative set} or \emph{multiplicatively closed set} \( S \subseteq R \) is a subset such that \( 1 \in S \) and if \( a, b \in S \), then \( ab \in S \). If \( U \subseteq R \) is any set, its \emph{multiplicative closure} \( S \) of \( U \) is the set - \[ \qty{\prod_{i = 1}^n u_i \mid n \geq 0, u_i \in U} \] + \[ \qty{\prod_{i = 1}^n u_i \midd n \geq 0, u_i \in U} \] which is the smallest multiplicatively closed set containing \( U \). \end{definition} \begin{example}