diff --git a/iii/commalg/02_tensor_products.tex b/iii/commalg/02_tensor_products.tex index 93b74e6..d2d153a 100644 --- a/iii/commalg/02_tensor_products.tex +++ b/iii/commalg/02_tensor_products.tex @@ -427,3 +427,119 @@ \subsection{Tensor products of maps} \[ T(m, n) = f(m) \otimes g(n) \] which can be checked to be \( R \)-bilinear. \end{proof} +\begin{example} + We can show + \[ (f \otimes g) \circ (h \otimes i) = (f \circ h) \otimes (g \circ i) \] + For example, if \( T : k^a \to k^b \) and \( S : k^c \to k^d \), + \[ T \otimes S : k^a \otimes_k k^c \to k^b \otimes_k k^d \] + is given by + \[ (T \otimes S)(e_i \otimes e_j) = (T e_i) \otimes (S e_j) = \sum_{\ell, t} [T]_{\ell i} [S]_{t j} (f_\ell \otimes f_t) \] + where \( [T] \) denotes \( T \) in the standard basis. + Ordering the basis elements of \( k^a \otimes k^c \) as + \[ e_1 \otimes e_1, \dots, e_1 \otimes e_c, e_2, \otimes e_1, \dots, e_a \otimes e_c \] + and similarly for \( k^b \otimes k^d \), + \[ [T \otimes S] = \begin{pmatrix} + [T]_{11} \cdot [S] & \cdots & [T]_{1a} \cdot [S] \\ + \vdots & \ddots & \vdots \\ + [T]_{b1} \cdot [S] & \cdots & [T]_{ba} \cdot [S] + \end{pmatrix} \] + This is known as the \emph{Kronecker product} of matrices. +\end{example} +\begin{proposition} + Let \( f : M \to M', g : N \to N' \) be \( R \)-module homomorphisms. + Then, + \begin{enumerate} + \item if \( f, g \) are isomorphisms, then so is \( f \otimes g \); + \item if \( f, g \) are surjective, then so is \( f \otimes g \). + \end{enumerate} +\end{proposition} +\begin{proof} + \emph{Part (i).} + \( f^{-1} \otimes g^{-1} \) is a two-sided inverse for \( f \otimes g \), as + \[ (f^{-1} \otimes g^{-1}) \circ (f \otimes g) = (f^{-1} \circ f) \otimes (g^{-1} \otimes g) = \id \] + and similarly for the other side. + + \emph{Part (ii).} + The image of \( f \otimes g \) contains all pure tensors of \( M' \otimes N' \), so it must be surjective. +\end{proof} +The analogous result for injectivity does not hold in the general case. +Consider \( f : \mathbb Z \to \mathbb Z \) given by multiplication by \( p \), and \( g : \faktor{\mathbb Z}{p\mathbb Z} \to \faktor{\mathbb Z}{p\mathbb Z} \) given by the identity. +Here, +\[ (f \otimes g)(a \otimes b) = (pa) \otimes b = a \otimes (pb) = a \otimes 0 = 0 \] +So \( f \otimes g \) is the zero map, but \( \mathbb Z \otimes \faktor{\mathbb Z}{p\mathbb Z} \simeq \faktor{\mathbb Z}{p\mathbb Z} \) is not the zero ring. + +\subsection{Tensor products of algebras} +Let \( B, C \) be \( R \)-algebras. +The usual tensor product of modules \( B \otimes_R C \) can be made into a ring and then an \( R \)-algebra. +This allows us to define the tensor product of algebras in a natural way. +We want the ring structure to satisfy +\[ (b \otimes c)(b' \otimes c') = (bb') \otimes (cc') \] +This extends to a well-defined map on all of \( B \otimes C \). +Indeed, for a fixed \( (b, c) \in B \times C \), there is an \( R \)-bilinear map \( B \times C \to B \otimes C \) given by +\[ (b', c') \mapsto (bb') \otimes (cc') \] +so we can use the universal property to extend this to a map \( B \otimes C \to B \otimes C \) that acts on pure tensors in the obvious way. +% TODO: why done here? check linearity in b and c? +One can show that the ring axioms are satisfied. +To define the \( R \)-algebra structure, we define the ring homomorphism \( R \to B \otimes C \) by +\[ r \mapsto (r \cdot 1_B) \otimes 1_C = 1_B \otimes (r \cdot 1_C) \] +\begin{example} + There is an isomorphism of \( R \)-algebras + \[ \varphi : R[X_1, \dots, X_n] \otimes_R R[T_1, \dots, T_r] \similarrightarrow R[X_1, \dots, X_n, T_1, \dots, T_r] \] + An \( R \)-basis for the left-hand side as an \( R \)-module is given by elements of the form \( a \otimes b \) where \( a \) and \( b \) are monomials. + The right hand side has a basis of elements of the form \( ab \), where \( a \in R[X_1, \dots, X_n] \) and \( b \in R[T_1, \dots, T_r] \) are monomials as above. + Mapping \( \varphi(a \otimes b) = ab \), we obtain an \( R \)-module isomorphism. + To check this is an \( R \)-algebra isomorphism, we verify multiplication and its action on scalars. + \[ \varphi(r \otimes 1) = r \cdot 1;\quad \varphi(1 \otimes 1) \] + and for monomials \( p_i, q_i, h_i, g_i \), + \begin{align*} + \varphi\qty(\qty(\sum_i p_i \otimes q_i)\qty(\sum_j h_j \otimes g_j)) &= \sum_{i,j} (p_i h_j) (q_i g_j) \\ + &= \sum_{i,j} (p_i q_i)(h_j g_j) \\ + &= \sum_{i,j} \varphi(p_i \otimes q_i) \varphi(h_j \otimes g_j) \\ + &= \qty(\sum_i \varphi(p_i \otimes q_i))\qty(\sum_j \varphi(h_j g_j)) \\ + &= \varphi\qty(\sum_i p_i \otimes q_i) \varphi\qty(\sum_j h_j \otimes g_j) + \end{align*} + More generally, + \[ \faktor{R[X_1, \dots, X_n]}{I} \otimes \faktor{R[T_1, \dots, T_r]}{J} \simeq \faktor{R[X_1, \dots, X_n] \otimes R[T_1, \dots, T_r]}{L} \simeq \faktor{R[X_1, \dots, X_n, T_1, \dots, T_r]}{I^e + J^e} \] + where \( L \) is constructed as above when quotients were discussed, and \( I^e \) is the extension of \( I \) in the larger ring \( R[X_1, \dots, X_n, T_1, \dots, T_r] \). + For example, + \[ \faktor{\mathbb C[X, Y, Z]}{(f, g)} \otimes_{\mathbb C} \faktor{\mathbb C[W, U]}{(h)} \simeq \faktor{\mathbb C[X, Y, Z, W, U]}{(f, g, h)} \] +\end{example} +\begin{proposition}[universal property of tensor product of algebras] + Let \( A, B \) be \( R \)-algebras. + For every algebra \( C \) and \( R \)-algebra homomorphisms \( f_1 : A \to C \) and \( f_2 : B \to C \), there is a unique \( R \)-algebra homomorphism \( h : A \otimes_R B \to C \) such that the following diagram commutes: + \[\begin{tikzcd} + A && B \\ + & {A \otimes B} \\ + & C + \arrow["{i_A}", from=1-1, to=2-2] + \arrow["{i_B}"', from=1-3, to=2-2] + \arrow["{f_1}"', curve={height=12pt}, from=1-1, to=3-2] + \arrow["{f_2}", curve={height=-12pt}, from=1-3, to=3-2] + \arrow["h", dashed, from=2-2, to=3-2] + \end{tikzcd}\] + where \( i_A(a) = a \otimes 1 \) and \( i_B(b) = 1 \otimes b \). + Furthermore, this characterises the triple \( (A \otimes_R B, i_A, i_B) \) uniquely up to unique isomorphism. +\end{proposition} +\begin{proof} + \( A \otimes_R B \) is generated as an \( R \)-algebra by \( \qty{a \otimes 1 \mid a \in A} \cup \qty{1 \otimes b \mid b \in B} \). + This implies the uniqueness of \( h \). + For existence, we can define an \( R \)-bilinear map \( A \times B \to C \) by \( (a, b) \mapsto f_1(a) f_2(b) \), then apply the universal property of the tensor product of modules. + This produces an \( R \)-linear map \( h : A \otimes B \to C \). + It remains to show that this is a homomorphism of algebras. + % the computation above with sums and \varphi is a special case of the following computation +\end{proof} +\begin{example} + \[\begin{tikzcd} + {R[X_1, \dots, X_n]} && {R[T_1, \dots, T_r]} \\ + & {R[X_1, \dots, X_n, T_1, \dots, T_r]} \\ + & C + \arrow[from=1-1, to=2-2] + \arrow[from=1-3, to=2-2] + \arrow[from=2-2, to=3-2] + \arrow["{f_1}"', curve={height=12pt}, from=1-1, to=3-2] + \arrow["{f_2}", curve={height=-12pt}, from=1-3, to=3-2] + \end{tikzcd}\] + An algebra homomorphism from a polynomial ring is defined uniquely by giving its action on its variables, thus + \[ R[X_1, \dots, X_n] \otimes R[T_1, \dots, T_r] \simeq R[X_1, \dots, X_n, T_1, \dots, T_r] \] + as was shown above. +\end{example}