diff --git a/iii/commalg/03_localisation.tex b/iii/commalg/03_localisation.tex index 1f4a2e7..dff18ad 100644 --- a/iii/commalg/03_localisation.tex +++ b/iii/commalg/03_localisation.tex @@ -420,3 +420,152 @@ \subsection{Extension and contraction of ideals} This in turn corresponds to a prime ideal \( \mathfrak p \in \Spec R \) that contains \( I \) and avoids \( x \). Hence \( x \notin \bigcap_{I \subseteq \mathfrak p \in \Spec R} \mathfrak p \). \end{proof} + +\subsection{Local properties} +\begin{definition} + A ring \( R \) is \emph{local} if it has exactly one maximal ideal. +\end{definition} +We write \( \mSpec R \) for the set of maximal ideals of \( R \). +\begin{example} + Let \( \mathfrak p \in \Spec R \). + Then there is a bijection between the prime ideals of \( R \) contained within \( \mathfrak p \) to \( \Spec R_{\mathfrak p} \), mapping \( \mathfrak n \mapsto \mathfrak n R_{\mathfrak p} \) and \( \mathfrak q^c \mapsfrom \mathfrak q \). + Hence, all prime ideals of \( R_{\mathfrak p} \) are contained in \( \mathfrak p^e = \mathfrak p R_{\mathfrak p} \). + Thus \( (R_{\mathfrak p}, \mathfrak p R_{\mathfrak p}) \) is a local ring. +\end{example} +\begin{example} + Recall that + \[ \mathbb Z_{(2)} = \qty{\frac{a}{b} \midd a, b \in \mathbb Z,\, 2 \nmid b} \] + This ring is local, and the unique maximal ideal is + \[ (2) \mathbb Z_{(2)} = \qty{\frac{2a}{b} \midd a, b \in \mathbb Z,\, 2 \nmid b} \] +\end{example} +\begin{proposition} + Let \( M \) be an \( R \)-module. + The following are equivalent. + \begin{enumerate} + \item \( M \) is the zero module; + \item \( M_{\mathfrak p} \) is the zero module for all prime ideals \( \mathfrak p \in \Spec R \); + \item \( M_{\mathfrak m} \) is the zero module for all maximal ideals \( \mathfrak m \in \mSpec R \). + \end{enumerate} +\end{proposition} +Informally, for modules, being zero is a local property. +\begin{proof} + First, note that (i) implies (ii) and (ii) implies (iii). + We show that (iii) implies (i). + Suppose that \( M \) is not the zero module, so let \( m \in M \) be a nonzero element. + Consider \( \operatorname{Ann}_R(m) = \qty{r \in R \mid rm = 0} \). + This is an ideal of \( R \), but is a proper ideal because \( 1 \notin \operatorname{Ann}_R(m) \). + Let \( \mathfrak m \) be a maximal ideal of \( R \) containing \( \operatorname{Ann}_R(m) \). + Now, \( \frac{m}{1} \in M_{\mathfrak m} = 0 \). + Thus, \( \frac{m}{1} = \frac{0}{1} \), so \( um = 0 \) for some \( u \in R \setminus \mathfrak m \). + But then \( u \notin \operatorname{Ann}_R(m) \), giving a contradiction. +\end{proof} +\begin{proposition} + Let \( f : M \to N \) be an \( R \)-linear map. + The following are equivalent. + \begin{enumerate} + \item \( f \) is injective; + \item \( f_{\mathfrak p} : M_{\mathfrak p} \to N_{\mathfrak p} \) is injective for every prime ideal \( \mathfrak p \in \Spec R \); + \item \( f_{\mathfrak m} : M_{\mathfrak m} \to N_{\mathfrak m} \) is injective for every maximal ideal \( \mathfrak m \in \mSpec R \). + \end{enumerate} +\end{proposition} +The same result holds for surjectivity. +\begin{proof} + The fact that (i) implies (ii) follows directly from the fact that localisation at \( \mathfrak p \) is an exact functor. + Clearly (ii) implies (iii). + Suppose that \( f_{\mathfrak m} \) is injective for each \( \mathfrak m \in \mSpec R \). + We have the following exact sequence. + % https://q.uiver.app/#q=WzAsNCxbMCwwLCIwIl0sWzEsMCwiXFxrZXIgZiJdLFsyLDAsIk0iXSxbMywwLCJOIl0sWzAsMV0sWzEsMl0sWzIsMywiZiJdXQ== +\[\begin{tikzcd} + 0 & {\ker f} & M & N + \arrow[from=1-1, to=1-2] + \arrow[from=1-2, to=1-3] + \arrow["f", from=1-3, to=1-4] +\end{tikzcd}\] + As \( (-)_{\mathfrak p} \) is exact, the sequence + % https://q.uiver.app/#q=WzAsNCxbMCwwLCIwIl0sWzEsMCwiKFxca2VyIGYpX3tcXG1hdGhmcmFrIG19Il0sWzIsMCwiTV97XFxtYXRoZnJhayBtfSJdLFszLDAsIk5fe1xcbWF0aGZyYWsgbX0iXSxbMCwxXSxbMSwyXSxbMiwzLCJmX3tcXG1hdGhmcmFrIG19Il1d +\[\begin{tikzcd} + 0 & {(\ker f)_{\mathfrak m}} & {M_{\mathfrak m}} & {N_{\mathfrak m}} + \arrow[from=1-1, to=1-2] + \arrow[from=1-2, to=1-3] + \arrow["{f_{\mathfrak m}}", from=1-3, to=1-4] +\end{tikzcd}\] + is exact. + But by assumption, \( (\ker f)_{\mathfrak m} = \ker (f_{\mathfrak m}) = 0 \). + So \( (\ker f)_{\mathfrak m} = 0 \) for all maximal ideals \( \mathfrak m \in \mSpec R \), so \( \ker f = 0 \). +\end{proof} +\begin{proposition} + Let \( M \) be an \( R \)-module. + The following are equivalent. + \begin{enumerate} + \item \( M \) is a flat \( R \)-module; + \item \( M_{\mathfrak p} \) is a flat \( R_{\mathfrak p} \)-module for every prime ideal \( \mathfrak p \in \Spec R \); + \item \( M_{\mathfrak m} \) is a flat \( R_{\mathfrak m} \)-module for every maximal ideal \( \mathfrak m \in \mSpec R \). + \end{enumerate} +\end{proposition} +\begin{proof} + \emph{(i) implies (ii).} + Note that \( M_{\mathfrak p} \simeq R_{\mathfrak p} \otimes_R M \) as \( R_{\mathfrak p} \)-modules, by extension of scalars. + Since extension of scalars preserves flatness, \( M_{\mathfrak p} \) is flat. + + Clearly (ii) implies (iii). + + \emph{(iii) implies (i).} + Let \( f : N \to P \) be an \( R \)-linear injective map. + Let \( \mathfrak m \in \mSpec R \). + Then \( f_{\mathfrak m} : N_{\mathfrak m} \to P_{\mathfrak m} \) is injective by the previous proposition. + Note that the following diagram commutes. + % https://q.uiver.app/#q=WzAsNCxbMCwwLCJOX3tcXG1hdGhmcmFrIG19IFxcb3RpbWVzX3tSX3tcXG1hdGhmcmFrIG19fSBNX3tcXG1hdGhmcmFrIG19Il0sWzEsMCwiUF97XFxtYXRoZnJhayBtfSBcXG90aW1lc197Ul97XFxtYXRoZnJhayBtfX0gTV97XFxtYXRoZnJhayBtfSJdLFsxLDEsIihQIFxcb3RpbWVzX1IgTSlfe1xcbWF0aGZyYWsgbX0iXSxbMCwxLCIoTiBcXG90aW1lc19SIE0pX3tcXG1hdGhmcmFrIG19Il0sWzAsMSwiZl97XFxtYXRoZnJhayBtfSBcXG90aW1lcyBcXGlkX3tNX3tcXG1hdGhmcmFrIG19fSJdLFsxLDIsIlxcc2ltIl0sWzAsMywiXFxzaW0iLDJdLFszLDIsIihmIFxcb3RpbWVzIFxcaWRfTSlfe1xcbWF0aGZyYWsgbX0iLDJdXQ== +\[\begin{tikzcd}[column sep=huge] + {N_{\mathfrak m} \otimes_{R_{\mathfrak m}} M_{\mathfrak m}} & {P_{\mathfrak m} \otimes_{R_{\mathfrak m}} M_{\mathfrak m}} \\ + {(N \otimes_R M)_{\mathfrak m}} & {(P \otimes_R M)_{\mathfrak m}} + \arrow["{f_{\mathfrak m} \otimes \id_{M_{\mathfrak m}}}", from=1-1, to=1-2] + \arrow["\sim", from=1-2, to=2-2] + \arrow["\sim"', from=1-1, to=2-1] + \arrow["{(f \otimes \id_M)_{\mathfrak m}}"', from=2-1, to=2-2] +\end{tikzcd}\] + Hence \( (f \otimes \id_M)_{\mathfrak m} \) is injective. + Since this holds for each \( \mathfrak m \in \mSpec R \), the map \( f \otimes \id_M \) must be injective, as required. +\end{proof} +\begin{example} + An \( R \)-module \( M \) is \emph{locally free} if \( M_{\mathfrak p} \) is a free \( R_{\mathfrak p} \)-module for every prime ideal \( \mathfrak p \in \Spec R \). + Consider \( R = \mathbb C \otimes \mathbb C \). + Then + \[ \Spec R = \qty{\mathfrak p \times \mathbb C \mid \mathfrak p \in \Spec \mathbb C} \cup \qty{\mathbb C \times \mathfrak p \mid \mathfrak p \in \Spec \mathbb C} = \qty{\mathbb C \times (0), (0) \times \mathbb C} \] + The map \( \mathbb C \times \mathbb C \to \mathbb C \) given by \( (a, b) \mapsto b \) sends \( (\mathbb C \times \mathbb C) \setminus \mathbb C \times (0) \) to units. + Thus, by the universal property of the localisation, we have a map + \[ (\mathbb C \times \mathbb C)_{\mathbb C \times (0)} \to \mathbb C;\quad \frac{(a, b)}{(c, d)} \mapsto \frac{b}{d} \] + This is clearly surjective, and one can check that this is also injective. + Thus \( (\mathbb C \times \mathbb C)_{\mathbb C \times (0)} \simeq \mathbb C \) is a field. + Similarly, \( (\mathbb C \times \mathbb C)_{(0) \times \mathbb C} \) is a field. + So for every \( \mathbb C \times \mathbb C \)-module \( M \) and prime ideal \( \mathfrak p \in \Spec (\mathbb C \times \mathbb C) \), the module \( M_{\mathfrak p} \) is a \( \mathbb C \)-vector space, so is free. + Thus every module over \( \mathbb C \times \mathbb C \) is locally free, but not every module over \( \mathbb C \times \mathbb C \) is free. + For example, take \( M = \mathbb C \times \qty{0} \) as a \( \mathbb C \times \mathbb C \)-module. + One can show that \( M \) is not the zero module, and not free of rank at least 1, so cannot be free. +\end{example} + +\subsection{Localisations as quotients} +Let \( U \subseteq R \), and let \( S \subseteq R \) be its multiplicative closure. +We can define +\[ R_U = \faktor{R[\qty{T_u}_{u \in U}]}{I_U};\quad I_U = \qty(\qty{u T_u - 1}_{u \in U}) \] +We claim that \( R_U = S^{-1}R \) as rings, and also as \( R \)-algebras. +Writing \( \overline u \) and \( \overline T_u \) to be the images of these elements in \( R_U \), the isomorphism maps +\[ \overline T_u \mapsto \frac{1}{u};\quad r T_{u_1} \dots T_{u_\ell} + I_U \mapsfrom \frac{r}{u_1 \dots u_\ell} \] +This is because \( R_U \) has the universal property of \( S^{-1}R \). +Indeed, for any \( f : R \to A \) mapping \( U \) to units, there is a unique \( h \) making the following diagram commute. +% https://q.uiver.app/#q=WzAsMyxbMCwwLCJSIl0sWzEsMCwiUl9VIl0sWzEsMSwiQSJdLFswLDFdLFswLDIsImYiLDJdLFsxLDIsImgiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0= +\[\begin{tikzcd} + R & {R_U} \\ + & A + \arrow[from=1-1, to=1-2] + \arrow["f"', from=1-1, to=2-2] + \arrow["h", dashed, from=1-2, to=2-2] +\end{tikzcd}\] +Note that \( A \) is an \( R \)-algebra via \( f \), so the diagram commutes if and only if \( h \) is an \( R \)-algebra homomorphism. +We have +\[ \Hom_{R\text{-algebra}}(R_U, A) \simeq \qty{\varphi : U \to A \mid f(u) \varphi(u) = 1} \] +But the the right hand side is a singleton. +\begin{example} + Let \( x \in R \), and consider \( R_x = R_{\qty{1, x, x^2, \dots}} \). + Here, + \[ R_x \simeq \faktor{R[T]}{(xT - 1)} \] +\end{example} diff --git a/util.sty b/util.sty index df2cd69..e6dcb04 100644 --- a/util.sty +++ b/util.sty @@ -215,6 +215,7 @@ \DeclareMathOperator{\mor}{mor} \DeclareMathOperator{\cod}{cod} \DeclareMathOperator{\Spec}{Spec} +\DeclareMathOperator{\mSpec}{mSpec} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\res}{res} % https://github.com/wspr/unicode-math/issues/457