diff --git a/iii/cat/05_monads.tex b/iii/cat/05_monads.tex index 41f971a..9198c5e 100644 --- a/iii/cat/05_monads.tex +++ b/iii/cat/05_monads.tex @@ -271,11 +271,21 @@ \subsection{Comparison functors} \begin{definition} Let \( \mathbb T = (T, \eta, \mu) \) be a monad on \( \mathcal C \). Then \( \operatorname{Adj}(\mathbb T) \) is the category of adjunctions \( F \dashv G \) which induce \( \mathbb T \), where the morphisms \( F \dashv G \) to \( F' \dashv G' \) are the functors \( K : \mathcal D \to \mathcal D' \) satisfying \( KF = F' \) and \( G' K = G \). + % https://q.uiver.app/#q=WzAsNCxbMSwwLCJcXG1hdGhjYWwgQyJdLFswLDEsIlxcbWF0aGNhbCBEIl0sWzIsMSwiXFxtYXRoY2FsIEQnIl0sWzEsMiwiXFxtYXRoY2FsIEMiXSxbMCwxLCJGIiwyXSxbMSwyLCJLIl0sWzAsMiwiRiciXSxbMiwzLCJHJyJdLFsxLDMsIkciLDJdXQ== + \[\begin{tikzcd} + & {\mathcal C} \\ + {\mathcal D} && {\mathcal D'} \\ + & {\mathcal C} + \arrow["F"', from=1-2, to=2-1] + \arrow["{F'}", from=1-2, to=2-3] + \arrow["K", from=2-1, to=2-3] + \arrow["G"', from=2-1, to=3-2] + \arrow["{G'}", from=2-3, to=3-2] + \end{tikzcd}\] \end{definition} \begin{theorem} The Kleisli adjunction \( F_{\mathbb T} \dashv G_{\mathbb T} \) is initial in \( \operatorname{Adj}(\mathbb T) \), and the Eilenberg--Moore adjunction \( F^{\mathbb T} \dashv G^{\mathbb T} \) is terminal in \( \operatorname{Adj}(\mathbb T) \). \end{theorem} -% TODO: Define the comparison functors \begin{proof} We will first do the case of the Eilenberg--Moore adjunction. Let \( F \dashv G \) be an adjunction inducing \( \mathbb T \). @@ -459,7 +469,7 @@ \subsection{Monadic adjunctions} \arrow["s", curve={height=-12pt}, from=1-3, to=1-2] \end{tikzcd}\] such that \( hf = hg, hs = 1_C, gt = 1_B, ft = sh \). - That is, \( h \) equalises \( f \) and \( g \), and the following diagrams commute. + That is, \( h \) has equal composites with \( f \) and \( g \), and the following diagrams commute. % https://q.uiver.app/#q=WzAsNSxbMCwwLCJBIl0sWzEsMCwiQiJdLFsyLDAsIkMiXSxbMSwxLCJDIl0sWzAsMSwiQiJdLFswLDEsImciXSxbMSwyLCJoIl0sWzMsMSwicyIsMl0sWzMsMiwiMV9DIiwyXSxbNCwwLCJ0Il0sWzQsMSwiMV9CIiwyXV0= \[\begin{tikzcd} A & B & C \\ diff --git a/iii/cat/06_monoidal_and_enriched_categories.tex b/iii/cat/06_monoidal_and_enriched_categories.tex index 4e09711..e62a87c 100644 --- a/iii/cat/06_monoidal_and_enriched_categories.tex +++ b/iii/cat/06_monoidal_and_enriched_categories.tex @@ -10,7 +10,9 @@ \subsection{Monoidal categories} \item In \( \mathbf{Met} \), the different metrics on \( X \times Y \) yield different monoidal structures on \( \mathbf{Met} \). Each of these have the one-point space, which is the terminal object, as the unit of the monoid. \item In \( \mathbf{AbGp} \), the tensor product gives a monoidal structure, where \( \mathbb Z \) is the unit. + Recall that if \( A, B, C \) are abelian groups, then morphisms \( A \otimes B \to C \) (that is, \( \mathbb Z \)-linear maps) correspond to \( \mathbb Z \)-bilinear maps \( A \times B \to C \). Similarly, if \( R \) is a commutative ring, the tensor product \( \otimes_R \) gives a monoidal structure on \( \mathbf{Mod}_R \) with unit \( R \). + The \( R \)-linear maps \( A \otimes B \to C \) correspond to \( R \)-bilinear maps \( A \times B \to C \). \item For any category \( \mathcal C \), its category of endofunctors \( [\mathcal C, \mathcal C] \) has a monoidal structure given by composition. The unit is the identity endofunctor \( 1_{\mathcal C} \). \item For posets with top and bottom elements \( 1 \) and \( 0 \), we can define the \emph{ordinal sum} \( A \ast B \) to be the poset obtained from their disjoint union, by identifying the top element of \( A \) with the bottom element of \( B \). @@ -82,13 +84,13 @@ \subsection{The coherence theorem} \item \( i(w) \) is the number of occurrences of \( I \) in \( w \). \end{enumerate} Applying any instance of \( \alpha, \lambda, \rho \) to a word reduces its height. - For example, \( \alpha \dots : w \to w' \), then \( a(w') < a(w) \) and \( i(w') = i(w) \), and correspondingly if \( \lambda\dots w \to w' \), then \( i(w') = i(w) - 1 \) and \( a(w') \leq a(w) \). + For example, if \( \alpha \ldots : w \to w' \), then \( a(w') < a(w) \) and \( i(w') = i(w) \), and correspondingly if \( \lambda\dots w \to w' \), then \( i(w') = i(w) - 1 \) and \( a(w') \leq a(w) \). In particular, any string of instances of \( \alpha, \lambda, \rho \) starting from \( w \) has length at most \( a(w) + i(w) \). We say that a word \( w \) is \emph{reduced} if either \( a(w) = i(w) = 0 \) or \( w = I \). If \( a(w) > 0 \), then \( w \) is the domain of an instance of \( \alpha \), and if \( i(w) > 0 \) and \( w \neq I \), then \( w \) is the domain of an instance of either \( \lambda \) or \( \rho \). - Thus, for any word \( w \), there is a string \( w \to \dots \to w_0 \) where \( w_0 \) is the unique reduced word containing the same variables of \( w \) in the same order. - We must show that any two such strings have the same composite + Thus, for any word \( w \), there is a string \( w \to \cdots \to w_0 \) where \( w_0 \) is the unique reduced word containing the same variables of \( w \) in the same order. + We must show that any two such strings have the same composite. Given % https://q.uiver.app/#q=WzAsMyxbMSwwLCJ3Il0sWzAsMSwidyciXSxbMiwxLCJ3JyciXSxbMCwxLCJcXHZhcnBoaSIsMl0sWzAsMiwiXFxwc2kiXV0= \[\begin{tikzcd} @@ -298,7 +300,7 @@ \subsection{Closed monoidal categories} \subsection{Enriched categories} \begin{definition} Let \( (\mathcal E, \otimes, I) \) be a monoidal category. - An \emph{\( \mathcal E \)-enriched category} is + An \emph{\( \mathcal E \)-enriched category} consists of \begin{enumerate} \item a collection \( \ob \mathcal C \) of objects; \item an object \( \mathcal C(A, B) \) of \( \mathcal E \) for each pair of objects \( A, B \in \ob \mathcal C \);