forked from ghidraninja/game-boy-bitcoin-miner
-
Notifications
You must be signed in to change notification settings - Fork 13
/
sha2.c
288 lines (250 loc) · 8.4 KB
/
sha2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "sha2.h"
#define CHUNK_SIZE 64
#define TOTAL_LEN_LEN 8
#define uint32_t unsigned long
/*
* ABOUT bool: this file does not use bool in order to be as pre-C99 compatible as possible.
*/
/*
* Comments from pseudo-code at https://en.wikipedia.org/wiki/SHA-2 are reproduced here.
* When useful for clarification, portions of the pseudo-code are reproduced here too.
*/
/*
* Initialize array of round constants:
* (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
*/
static const uint32_t k[] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
struct buffer_state {
const uint8_t * p;
size_t len;
size_t total_len;
uint8_t single_one_delivered; /* bool */
uint8_t total_len_delivered; /* bool */
};
// compliant right rotation, doesn't have to be very efficient
static uint32_t right_rot_gen(uint32_t value, uint8_t count)
{
return value >> count | value << (32 - count);
}
// lookup table pointers
char *rot_lobytes[8];
char *rot_hibytes[8];
// generate lookup tables for right_rot (hi / lo for every byte for 8 possible rotations)
void generate_rot_tables(void) {
uint32_t j;
uint8_t hi;
uint8_t lo;
uint8_t c;
size_t i;
for (c=0;c<8;c++) {
// allocate and clear
rot_lobytes[c] = malloc(256);
rot_hibytes[c] = malloc(256);
memset(rot_lobytes[c],0,256);
memset(rot_hibytes[c],0,256);
for (i=0;i<256;i++) {
j = i << 8;
j = right_rot_gen(j, c);
hi = (j & 0xff00) >> 8;
lo = (j & 0x00ff);
rot_lobytes[c][i] = lo;
rot_hibytes[c][i] = hi;
}
}
}
// static allocation for right_rot
uint32_t right_rotbuf;
uint8_t *r = (uint8_t*)&right_rotbuf;
uint8_t tmp;
uint8_t c;
uint8_t *rot_lo;
uint8_t *rot_hi;
uint32_t right_rot(uint32_t value, uint8_t count) {
// not portable, assuming little-endianness (works for 6502 and x86/x64)
right_rotbuf = value;
c = count;
if (c>=24) {
c = c - 24;
tmp = r[0]; r[0] = r[3]; r[3] = r[2]; r[2] = r[1]; r[1] = tmp;
}
if (c>=16) {
c = c - 16;
tmp = r[0]; r[0] = r[2]; r[2] = tmp;
tmp = r[1]; r[1] = r[3]; r[3] = tmp;
}
if (c>=8) {
c = c - 8;
tmp = r[0]; r[0] = r[1]; r[1] = r[2]; r[2] = r[3]; r[3] = tmp;
}
if (c>0) {
rot_lo = rot_lobytes[c];
rot_hi = rot_hibytes[c];
tmp = rot_lo[r[0]];
r[0] = rot_hi[r[0]] | rot_lo[r[1]];
r[1] = rot_hi[r[1]] | rot_lo[r[2]];
r[2] = rot_hi[r[2]] | rot_lo[r[3]];
r[3] = rot_hi[r[3]] | tmp;
}
return right_rotbuf;
}
static void __fastcall__ init_buf_state(struct buffer_state * state, const void * input, size_t len)
{
state->p = input;
state->len = len;
state->total_len = len;
state->single_one_delivered = 0;
state->total_len_delivered = 0;
}
/* Return value: bool */
static uint8_t __fastcall__ calc_chunk(uint8_t chunk[CHUNK_SIZE], struct buffer_state * state)
{
size_t space_in_chunk;
if (state->total_len_delivered) {
return 0;
}
if (state->len >= CHUNK_SIZE) {
memcpy(chunk, state->p, CHUNK_SIZE);
state->p += CHUNK_SIZE;
state->len -= CHUNK_SIZE;
return 1;
}
memcpy(chunk, state->p, state->len);
chunk += state->len;
space_in_chunk = CHUNK_SIZE - state->len;
state->p += state->len;
state->len = 0;
/* If we are here, space_in_chunk is one at minimum. */
if (!state->single_one_delivered) {
*chunk++ = 0x80;
space_in_chunk -= 1;
state->single_one_delivered = 1;
}
/*
* Now:
* - either there is enough space left for the total length, and we can conclude,
* - or there is too little space left, and we have to pad the rest of this chunk with zeroes.
* In the latter case, we will conclude at the next invokation of this function.
*/
if (space_in_chunk >= TOTAL_LEN_LEN) {
const size_t left = space_in_chunk - TOTAL_LEN_LEN;
size_t len = state->total_len;
int8_t i;
memset(chunk, 0x00, left);
chunk += left;
/* Storing of len * 8 as a big endian 64-bit without overflow. */
chunk[7] = (uint8_t) (len << 3);
len >>= 5;
for (i = 6; i >= 0; i--) {
chunk[i] = (uint8_t) len;
len >>= 8;
}
state->total_len_delivered = 1;
} else {
memset(chunk, 0x00, space_in_chunk);
}
return 1;
}
/*
* Limitations:
* - Since input is a pointer in RAM, the data to hash should be in RAM, which could be a problem
* for large data sizes.
* - SHA algorithms theoretically operate on bit strings. However, this implementation has no support
* for bit string lengths that are not multiples of eight, and it really operates on arrays of bytes.
* In particular, the len parameter is a number of bytes.
*/
void __fastcall__ calc_sha_256(uint8_t hash[32], const void * input, size_t len)
{
/*
* Note 1: All integers (expect indexes) are 32-bit unsigned integers and addition is calculated modulo 2^32.
* Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 = i = 63
* Note 3: The compression function uses 8 working variables, a through h
* Note 4: Big-endian convention is used when expressing the constants in this pseudocode,
* and when parsing message block data from bytes to words, for example,
* the first word of the input message "abc" after padding is 0x61626380
*/
/*
* Initialize hash values:
* (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
*/
uint32_t h[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
uint8_t i, j;
/* 512-bit chunks is what we will operate on. */
uint8_t chunk[64];
struct buffer_state state;
init_buf_state(&state, input, len);
while (calc_chunk(chunk, &state)) {
uint32_t ah[8];
const uint8_t *p = chunk;
/* Initialize working variables to current hash value: */
for (i = 0; i < 8; i++)
ah[i] = h[i];
/* Compression function main loop: */
for (i = 0; i < 4; i++) {
/*
* The w-array is really w[64], but since we only need
* 16 of them at a time, we save stack by calculating
* 16 at a time.
*
* This optimization was not there initially and the
* rest of the comments about w[64] are kept in their
* initial state.
*/
/*
* create a 64-entry message schedule array w[0..63] of 32-bit words
* (The initial values in w[0..63] don't matter, so many implementations zero them here)
* copy chunk into first 16 words w[0..15] of the message schedule array
*/
uint32_t w[16];
uint32_t s0, s1, ch, temp1, temp2, maj;
for (j = 0; j < 16; j++) {
if (i == 0) {
w[j] = (uint32_t) p[0] << 24 | (uint32_t) p[1] << 16 |
(uint32_t) p[2] << 8 | (uint32_t) p[3];
p += 4;
} else {
/* Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array: */
s0 = right_rot(w[(j + 1) & 0xf], 7) ^ right_rot(w[(j + 1) & 0xf], 18) ^ (w[(j + 1) & 0xf] >> 3);
s1 = right_rot(w[(j + 14) & 0xf], 17) ^ right_rot(w[(j + 14) & 0xf], 19) ^ (w[(j + 14) & 0xf] >> 10);
w[j] = w[j] + s0 + w[(j + 9) & 0xf] + s1;
}
s1 = right_rot(ah[4], 6) ^ right_rot(ah[4], 11) ^ right_rot(ah[4], 25);
ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]);
temp1 = ah[7] + s1 + ch + k[i << 4 | j] + w[j];
s0 = right_rot(ah[0], 2) ^ right_rot(ah[0], 13) ^ right_rot(ah[0], 22);
maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]);
temp2 = s0 + maj;
ah[7] = ah[6];
ah[6] = ah[5];
ah[5] = ah[4];
ah[4] = ah[3] + temp1;
ah[3] = ah[2];
ah[2] = ah[1];
ah[1] = ah[0];
ah[0] = temp1 + temp2;
}
}
/* Add the compressed chunk to the current hash value: */
for (i = 0; i < 8; i++)
h[i] += ah[i];
}
/* Produce the final hash value (big-endian): */
for (i = 0, j = 0; i < 8; i++)
{
hash[j++] = (uint8_t) (h[i] >> 24);
hash[j++] = (uint8_t) (h[i] >> 16);
hash[j++] = (uint8_t) (h[i] >> 8);
hash[j++] = (uint8_t) h[i];
}
}