A simple Python wrapper for the Amazon.com Product Advertising API.
- An object oriented interface to Amazon products
- Supports both item search and item lookup
- Compatible with Google App Engine
Before you get started, make sure you have:
- Installed Bottlenose (
pip install bottlenose
) - Installed lxml (
pip install lxml
) - Installed dateutil (
pip install python-dateutil
) - An Amazon Product Advertising account
- An AWS account
pip install python-amazon-simple-product-api
Lookup:
>>> from amazon.api import AmazonAPI
>>> amazon = AmazonAPI(AMAZON_ACCESS_KEY, AMAZON_SECRET_KEY, AMAZON_ASSOC_TAG)
>>> product = amazon.lookup(ItemId='B00EOE0WKQ')
>>> product.title
'Amazon Fire Phone, 32GB (AT&T)'
>>> product.price_and_currency
(199.0, 'USD')
>>> product.ean
'0848719035209'
>>> product.large_image_url
'http://ecx.images-amazon.com/images/I/51BrZzpkWrL.jpg'
>>> product.get_attribute('Publisher')
'Amazon'
>>> product.get_attributes(['ItemDimensions.Width', 'ItemDimensions.Height'])
{'ItemDimensions.Width': '262', 'ItemDimensions.Height': '35'}
(the API wrapper also supports many other product attributes)
Lookup on amazon.de instead of amazon.com by setting the region:
>>> from amazon.api import AmazonAPI
>>> import bottlenose.api
>>> region_options = bottlenose.api.SERVICE_DOMAINS.keys()
>>> region_options
['US', 'FR', 'CN', 'UK', 'IN', 'CA', 'DE', 'JP', 'IT', 'ES']
>>> amazon_de = AmazonAPI(AMAZON_ACCESS_KEY, AMAZON_SECRET_KEY, AMAZON_ASSOC_TAG, region="DE")
>>> product = amazon_de.lookup(ItemId='B0051QVF7A')
>>> product.title
u'Kindle, WLAN, 15 cm (6 Zoll) E Ink Display, deutsches Men\xfc'
>>> product.price_and_currency
(99.0, 'EUR')
Bulk lookup requests are also supported:
>>> from amazon.api import AmazonAPI
>>> amazon = AmazonAPI(AMAZON_ACCESS_KEY, AMAZON_SECRET_KEY, AMAZON_ASSOC_TAG)
>>> products = amazon.lookup(ItemId='B00KC6I06S,B005DOK8NW,B00TSUGXKE')
>>> len(products)
5
>>> products[0].asin
'B0051QVESA'
If you'd rather get an empty list intead of exceptions use lookup_bulk() instead.
Search:
>>> from amazon.api import AmazonAPI
>>> amazon = AmazonAPI(AMAZON_ACCESS_KEY, AMAZON_SECRET_KEY, AMAZON_ASSOC_TAG)
>>> products = amazon.search(Keywords='kindle', SearchIndex='All')
>>> for i, product in enumerate(products):
>>> print "{0}. '{1}'".format(i, product.title)
0. 'Kindle, Wi-Fi, 6" E Ink Display - includes Special Offers & Sponsored Screensavers'
1. 'Kindle Fire, Full Color 7" Multi-touch Display, Wi-Fi'
2. 'Kindle US Power Adapter (Not included with Kindle or Kindle Touch)'
3. 'Kindle Touch, Wi-Fi, 6" E Ink Display - includes Special Offers & Sponsored Screensavers'
4. 'Kindle Keyboard 3G, Free 3G + Wi-Fi, 6" E Ink Display - includes Special Offers & Sponsored Screensavers'
5. 'Kindle Touch 3G, Free 3G + Wi-Fi, 6" E Ink Display - includes Special Offers & Sponsored Screensavers'
...
49. 'Kindle Wireless Reading Device (6" Display, U.S. Wireless)'
The search method returns an iterable that will iterate through all products, on all pages available. Additional pages are retrieved automatically as needed. Keep in mind that Amazon limits the number of pages it makes available.
Valid values of SearchIndex are: 'All','Apparel','Appliances','ArtsAndCrafts','Automotive', 'Baby','Beauty','Blended','Books','Classical','Collectibles','DVD','DigitalMusic','Electronics', 'GiftCards','GourmetFood','Grocery','HealthPersonalCare','HomeGarden','Industrial','Jewelry', 'KindleStore','Kitchen','LawnAndGarden','Marketplace','MP3Downloads','Magazines','Miscellaneous', 'Music','MusicTracks','MusicalInstruments','MobileApps','OfficeProducts','OutdoorLiving','PCHardware', 'PetSupplies','Photo','Shoes','Software','SportingGoods','Tools','Toys','UnboxVideo','VHS','Video', 'VideoGames','Watches','Wireless','WirelessAccessories'
There is also a convenience method to search and return a list of the first N results:
>>> from amazon.api import AmazonAPI
>>> amazon = AmazonAPI(AMAZON_ACCESS_KEY, AMAZON_SECRET_KEY, AMAZON_ASSOC_TAG)
>>> products = amazon.search_n(1, Keywords='kindle', SearchIndex='All')
>>> len(products)
1
>>> products[0].title
'Kindle, Wi-Fi, 6" E Ink Display - includes Special Offers & Sponsored Screensavers'
Similarity Lookup:
>>> from amazon.api import AmazonAPI
>>> amazon = AmazonAPI(AMAZON_ACCESS_KEY, AMAZON_SECRET_KEY, AMAZON_ASSOC_TAG)
>>> products = amazon.similarity_lookup(ItemId='B0051QVESA,B005DOK8NW')
>>> len(products)
4
Browse Node Lookup:
>>> from amazon.api import AmazonAPI
>>> amazon = AmazonAPI(AMAZON_ACCESS_KEY, AMAZON_SECRET_KEY, AMAZON_ASSOC_TAG)
>>> bn = amazon.browse_node_lookup(BrowseNodeId=2642129011)
>>> bn.name
'eBook Readers'
Create and manipulate Carts:
>>> from amazon.api import AmazonAPI
>>> amazon = AmazonAPI(AMAZON_ACCESS_KEY, AMAZON_SECRET_KEY, AMAZON_ASSOC_TAG)
>>> product = amazon.lookup(ItemId="B0016J8AOC")
>>> item = {'offer_id': product.offer_id, 'quantity': 1}
>>> cart = amazon.cart_create(item)
>>> fetched_cart = amazon.cart_get(cart.cart_id, cart.hmac)
>>> another_product = amazon.lookup(ItemId='0312098286')
>>> another_item = {'offer_id': another_product.offer_id, 'quantity': 1}
>>> another_cart = amazon.cart_add(another_item, cart.cart_id, cart.hmac)
>>> cart_item_id = None
>>> for item in cart:
>>> cart_item_id = item.cart_item_id
>>> modify_item = {'cart_item_id': cart_item_id, 'quantity': 3}
>>> modified_cart = amazon.cart_modify(item, cart.cart_id, cart.hmac)
>>> cleared_cart = amazon.cart_clear(cart.cart_id, cart.hmac)
For the 'Books' SearchIndex a Power Search option is avaialble:
>>> products = amazon.search(Power="subject:history and (spain or mexico) and not military and language:spanish",SearchIndex='Books')
For more information about these calls, please consult the Product Advertising API Developer Guide.
To run the test suite please follow these steps:
- Make sure Nose is installed: (
pip install nose
) - Create a local file named:
test_settings.py
with the following variables set to the relevant values:AMAZON_ACCESS_KEY
,AMAZON_SECRET_KEY
,AMAZON_ASSOC_TAG
- Run
nosetests
- All code should be unit tested
- All tests must pass
- Source code should be PEP8 complient
- Coverage shouldn't decrease
- All Pull Requests should be rebased against master before submitting the PR
This project is looking for core contributors. Please message me.
Copyright © 2012 Yoav Aviram
See LICENSE for details.