diff --git a/README-zh-tw.md b/README-zh-tw.md
index 36cb525..400cd21 100644
--- a/README-zh-tw.md
+++ b/README-zh-tw.md
@@ -3,32 +3,32 @@
@@ -39,7 +39,7 @@
-
+
@@ -51,27 +51,27 @@
```yaml
# 這是一個視頻配置列表
- video_url: "rtsp://example1.com/stream" # 視頻的 URL
- image_name: "cam1" # 圖像的名稱
- label: "label1" # 視頻的標籤
- model_key: "yolov8n" # 視頻使用的模型鍵
- line_token: "token1" # 用於通知的 Line Token
- run_local: True # 本地運行物件檢測
+ image_name: "cam1" # 圖像的名稱
+ label: "label1" # 視頻的標籤
+ model_key: "yolov8n" # 視頻使用的模型鍵
+ line_token: "token1" # 用於通知的 Line Token
+ run_local: True # 本地運行物件檢測
- video_url: "rtsp://example2.com/stream"
- image_name: "cam2"
- label: "label2"
- model_key: "yolov8n"
- line_token: "token2"
- run_local: True
+ image_name: "cam2"
+ label: "label2"
+ model_key: "yolov8n"
+ line_token: "token2"
+ run_local: True
```
數組中的每個對象代表一個視頻流配置,包含以下字段:
- `video_url`: 現場視頻流的 URL。這可以包括:
- - 監控流
- - RTSP
- - 副流
- - YouTube 視頻或直播
- - Discord
+ - 監控流
+ - RTSP
+ - 副流
+ - YouTube 視頻或直播
+ - Discord
- `image_name`: 分配給圖像或攝影機的名稱。
- `label`: 分配給視頻流的標籤。
- `model_key`: 用於機器學習模型的鍵標識符。
@@ -81,83 +81,87 @@
- 使用 Docker
-
-要運行危險檢測系統,您需要在機器上安裝 Docker 和 Docker Compose。按照以下步驟來啟動系統:
-
-1. 將存儲庫克隆到本地機器。
- ```bash
- git clone https://github.com/yihong1120/Construction-Hazard-Detection.git
- ```
-2. 進入克隆的目錄。
- ```bash
- cd Construction-Hazard-Detection
- ```
-3. 使用 Docker Compose 構建並運行服務:
- ```bash
- docker-compose up --build
- ```
-
-4. 使用特定的配置文件運行主應用程序,使用以下命令:
- ```bash
- docker-compose run main-application python main.py --config /path/in/container/configuration.yaml
- ```
- 將 `/path/in/container/configuration.yaml` 替換為容器內配置文件的實際路徑。
-
-5. 停止服務,使用以下命令:
- ```bash
- docker-compose down
- ```
+ Docker
+
+ ### 使用 Docker
+
+ 要運行危險檢測系統,您需要在機器上安裝 Docker 和 Docker Compose。按照以下步驟來啟動系統:
+
+ 1. 將存儲庫克隆到本地機器。
+ ```bash
+ git clone https://github.com/yihong1120/Construction-Hazard-Detection.git
+ ```
+ 2. 進入克隆的目錄。
+ ```bash
+ cd Construction-Hazard-Detection
+ ```
+ 3. 使用 Docker Compose 構建並運行服務:
+ ```bash
+ docker-compose up --build
+ ```
+
+ 4. 使用特定的配置文件運行主應用程序,使用以下命令:
+ ```bash
+ docker-compose run main-application python main.py --config /path/in/container/configuration.yaml
+ ```
+ 將 `/path/in/container/configuration.yaml` 替換為容器內配置文件的實際路徑。
+
+ 5. 停止服務,使用以下命令:
+ ```bash
+ docker-compose down
+ ```
- 使用 Python
-
-要在終端運行危險檢測系統,您需要在機器上安裝 Python。按照以下步驟來啟動系統:
-
-1. 將存儲庫克隆到本地機器。
- ```bash
- git clone https://github.com/yihong1120/Construction-Hazard-Detection.git
- ```
-
-2. 進入克隆的目錄。
- ```bash
- cd Construction-Hazard-Detection
- ```
-
-3. 安裝所需的軟體包:
- ```bash
- pip install -r requirements.txt
- ```
-
-4. 安裝並啟動 MySQL 服務:
- ```bash
- sudo apt install mysql-server
- sudo systemctl start mysql.service
- ```
-
-5. 設置用戶帳戶和密碼。使用以下命令啟動用戶管理 API:
- ```bash
- gunicorn -w 1 -b 0.0.0.0:8000 "examples.User-Management.app:user-managements-app"
- ```
- 建議使用 Postman 應用程式與 API 進行互動。
-
-6. 要運行物體檢測 API,使用以下命令:
- ```bash
- gunicorn -w 1 -b 0.0.0.0:8001 "examples.Model-Server.app:app"
- ```
-
-7. 使用特定的配置文件運行主應用程序,使用以下命令:
- ```bash
- python3 main.py --config /path/to/your/configuration.yaml
- ```
- 將 `/path/to/your/configuration.yaml` 替換為您的配置文件的實際路徑。
-
-8. 要啟動串流 Web 服務,執行以下命令:
- ```bash
- gunicorn -w 1 -k eventlet -b 127.0.0.1:8002 "examples.Stream-Web.app:streaming-web-app"
- ```
+ Python
+
+ ### 使用 Python
+
+ 要在終端運行危險檢測系統,您需要在機器上安裝 Python。按照以下步驟來啟動系統:
+
+ 1. 將存儲庫克隆到本地機器。
+ ```bash
+ git clone https://github.com/yihong1120/Construction-Hazard-Detection.git
+ ```
+
+ 2. 進入克隆的目錄。
+ ```bash
+ cd Construction-Hazard-Detection
+ ```
+
+ 3. 安裝所需的軟體包:
+ ```bash
+ pip install -r requirements.txt
+ ```
+
+ 4. 安裝並啟動 MySQL 服務:
+ ```bash
+ sudo apt install mysql-server
+ sudo systemctl start mysql.service
+ ```
+
+ 5. 設置用戶帳戶和密碼。使用以下命令啟動用戶管理 API:
+ ```bash
+ gunicorn -w 1 -b 0.0.0.0:8000 "examples.user_management.app:user-managements-app"
+ ```
+ 建議使用 Postman 應用程式與 API 進行互動。
+
+ 6. 要運行物體檢測 API,使用以下命令:
+ ```bash
+ gunicorn -w 1 -b 0.0.0.0:8001 "examples.YOLOv8_server_api.app:YOLOv8-server-api-app"
+ ```
+
+ 7. 使用特定的配置文件運行主應用程序,使用以下命令:
+ ```bash
+ python3 main.py --config /path/to/your/configuration.yaml
+ ```
+ 將 `/path/to/your/configuration.yaml` 替換為您的配置文件的實際路徑。
+
+ 8. 要啟動串流 Web 服務,執行以下命令:
+ ```bash
+ gunicorn -w 1 -k eventlet -b 127.0.0.1:8002 "examples.streaming_web.app:streaming-web-app"
+ ```
@@ -188,15 +192,15 @@
- `9: '車輛'`
- 檢測模型
+ 檢測模型
- | Model | size
(pixels) | mAPval
50 | mAPval
50-95 | params
(M) | FLOPs
(B) |
- | ------- | --------------------- | ------------------ | ------------------ | ----------------- | ----------------- |
- | YOLOv8n | 640 | // | // | 3.2 | 8.7 |
- | YOLOv8s | 640 | // | // | 11.2 | 28.6 |
- | YOLOv8m | 640 | // | // | 25.9 | 78.9 |
- | YOLOv8l | 640 | // | // | 43.7 | 165.2 |
- | YOLOv8x | 640 | 82.9 | 60.9 | 68.2 | 257.8 |
+ | Model | size
(pixels) | mAPval
50 | mAPval
50-95 | params
(M) | FLOPs
(B) |
+ | ------- | --------------------- | ------------------ | ------------------ | ----------------- | ----------------- |
+ | YOLOv8n | 640 | // | // | 3.2 | 8.7 |
+ | YOLOv8s | 640 | // | // | 11.2 | 28.6 |
+ | YOLOv8m | 640 | // | // | 25.9 | 78.9 |
+ | YOLOv8l | 640 | // | // | 43.7 | 165.2 |
+ | YOLOv8x | 640 | 82.9 | 60.9 | 68.2 | 257.8 |
diff --git a/README.md b/README.md
index 71625a2..65ce224 100644
--- a/README.md
+++ b/README.md
@@ -3,32 +3,32 @@
@@ -39,7 +39,7 @@
-
+
@@ -84,85 +84,88 @@ Each object in the array represents a video stream configuration with the follow
Now, you could launch the hazard-detection system in Docker or Python env:
- Usage for Docker
+ Docker
- To run the hazard detection system, you need to have Docker and Docker Compose installed on your machine. Follow these steps to get the system up and running:
+ ### Usage for Docker
- 1. Clone the repository to your local machine.
- ```
- git clone https://github.com/yihong1120/Construction-Hazard-Detection.git
- ```
-
- 2. Navigate to the cloned directory.
- ```
- cd Construction-Hazard-Detection
- ```
-
- 3. Build and run the services using Docker Compose:
+ To run the hazard detection system, you need to have Docker and Docker Compose installed on your machine. Follow these steps to get the system up and running:
- ```bash
- docker-compose up --build
- ```
+ 1. Clone the repository to your local machine.
+ ```
+ git clone https://github.com/yihong1120/Construction-Hazard-Detection.git
+ ```
- 4. To run the main application with a specific configuration file, use the following command:
- ```bash
- docker-compose run main-application python main.py --config /path/in/container/configuration.yaml
- ```
- Replace `/path/in/container/configuration.yaml` with the actual path to your configuration file inside the container.
+ 2. Navigate to the cloned directory.
+ ```
+ cd Construction-Hazard-Detection
+ ```
+
+ 3. Build and run the services using Docker Compose:
+ ```bash
+ docker-compose up --build
+ ```
- 5. To stop the services, use the following command:
- ```bash
- docker-compose down
- ```
+ 4. To run the main application with a specific configuration file, use the following command:
+ ```bash
+ docker-compose run main-application python main.py --config /path/in/container/configuration.yaml
+ ```
+ Replace `/path/in/container/configuration.yaml` with the actual path to your configuration file inside the container.
+
+ 5. To stop the services, use the following command:
+ ```bash
+ docker-compose down
+ ```
- Usage for Python
+ Python
+
+ ### Usage for Python
- To run the hazard detection system with Python, follow these steps:
+ To run the hazard detection system with Python, follow these steps:
- 1. Clone the repository to your local machine:
- ```bash
- git clone https://github.com/yihong1120/Construction-Hazard-Detection.git
- ```
+ 1. Clone the repository to your local machine:
+ ```bash
+ git clone https://github.com/yihong1120/Construction-Hazard-Detection.git
+ ```
- 2. Navigate to the cloned directory:
- ```bash
- cd Construction-Hazard-Detection
- ```
+ 2. Navigate to the cloned directory:
+ ```bash
+ cd Construction-Hazard-Detection
+ ```
- 3. Install required packages:
- ```bash
- pip install -r requirements.txt
- ```
+ 3. Install required packages:
+ ```bash
+ pip install -r requirements.txt
+ ```
- 4. Install and launch MySQL service (if required):
- ```bash
- sudo apt install mysql-server
- sudo systemctl start mysql.service
- ```
+ 4. Install and launch MySQL service (if required):
+ ```bash
+ sudo apt install mysql-server
+ sudo systemctl start mysql.service
+ ```
- 5. Start user management API:
- ```bash
- gunicorn -w 1 -b 0.0.0.0:8000 "examples.User-Management.app:user-managements-app"
- ```
+ 5. Start user management API:
+ ```bash
+ gunicorn -w 1 -b 0.0.0.0:8000 "examples.User-Management.app:user-managements-app"
+ ```
- 6. Run object detection API:
- ```bash
- gunicorn -w 1 -b 0.0.0.0:8001 "examples.Model-Server.app:app"
- ```
+ 6. Run object detection API:
+ ```bash
+ gunicorn -w 1 -b 0.0.0.0:8001 "examples.Model-Server.app:app"
+ ```
- 7. Run the main application with a specific configuration file:
- ```bash
- python3 main.py --config /path/to/your/configuration.yaml
- ```
- Replace `/path/to/your/configuration.yaml` with the actual path to your configuration file.
+ 7. Run the main application with a specific configuration file:
+ ```bash
+ python3 main.py --config /path/to/your/configuration.yaml
+ ```
+ Replace `/path/to/your/configuration.yaml` with the actual path to your configuration file.
- 8. Start the streaming web service:
- ```bash
- gunicorn -w 1 -k eventlet -b 127.0.0.1:8002 "examples.Stream-Web.app:streaming-web-app"
- ```
+ 8. Start the streaming web service:
+ ```bash
+ gunicorn -w 1 -k eventlet -b 127.0.0.1:8002 "examples.Stream-Web.app:streaming-web-app"
+ ```
@@ -195,15 +198,15 @@ The primary dataset for training this model is the [Construction Site Safety Ima
- `9: 'Vehicle'`
- Models for detection
+ Models for detection
- | Model | size
(pixels) | mAPval
50 | mAPval
50-95 | params
(M) | FLOPs
(B) |
- | ------- | --------------------- | ------------------ | ------------------ | ----------------- | ----------------- |
- | YOLOv8n | 640 | // | // | 3.2 | 8.7 |
- | YOLOv8s | 640 | // | // | 11.2 | 28.6 |
- | YOLOv8m | 640 | // | // | 25.9 | 78.9 |
- | YOLOv8l | 640 | // | // | 43.7 | 165.2 |
- | YOLOv8x | 640 | 82.9 | 60.9 | 68.2 | 257.8 |
+ | Model | size
(pixels) | mAPval
50 | mAPval
50-95 | params
(M) | FLOPs
(B) |
+ | ------- | --------------------- | ------------------ | ------------------ | ----------------- | ----------------- |
+ | YOLOv8n | 640 | // | // | 3.2 | 8.7 |
+ | YOLOv8s | 640 | // | // | 11.2 | 28.6 |
+ | YOLOv8m | 640 | // | // | 25.9 | 78.9 |
+ | YOLOv8l | 640 | // | // | 43.7 | 165.2 |
+ | YOLOv8x | 640 | 82.9 | 60.9 | 68.2 | 257.8 |