Skip to content
Apogentus edited this page Jan 24, 2016 · 5 revisions

== Tutorials ==

  • [http://nbviewer.ipython.org/gist/rpmuller/5920182 A Crash Course in Python for Scientists]
  • [https://docs.scipy.org/doc/numpy-dev/user/quickstart.html Numpy]
  • [http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb Matplotlib]
  • [http://www.scipy-lectures.org/ Scipy Lecture Notes]
  • [http://pandas.pydata.org/pandas-docs/stable/10min.html Pandas]
  • [http://scikit-learn.org/stable/tutorial/basic/tutorial.html Scikit-learn]

== More information ==

  • Одна из классических и наиболее полных книг по машинному обучению. [http://web.stanford.edu/~hastie/local.ftp/Springer/ESLII_print10.pdf Elements of Statistical Learning (Trevor Hastie, Robert Tibshirani, Jerome Friedman)]

=== Python ===

  • [http://python.org Official python cite]
  • Necessary libraries: [http://www.numpy.org/ NumPy], [http://pandas.pydata.org/ Pandas], [http://scikit-learn.org/stable/ SciKit-Learn], [http://matplotlib.org/ Matplotlib].
  • [https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks A gallery of ineresting IPython notebooks]
Clone this wiki locally