forked from cmu-phil/Spectral
-
Notifications
You must be signed in to change notification settings - Fork 0
/
property.hlean
335 lines (231 loc) · 11.2 KB
/
property.hlean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/-
Copyright (c) 2017 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
-/
import types.trunc .logic
open funext eq trunc is_trunc logic
definition property (X : Type) := X → Prop
namespace property
variable {X : Type}
/- membership and subproperty -/
definition mem (x : X) (a : property X) := a x
infix ∈ := mem
notation a ∉ b := ¬ mem a b
/-theorem ext {a b : property X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b :=
eq_of_homotopy (take x, propext (H x))
-/
definition subproperty (a b : property X) : Prop := Prop.mk (∀⦃x⦄, x ∈ a → x ∈ b) _
infix ⊆ := subproperty
definition superproperty (s t : property X) : Prop := t ⊆ s
infix ⊇ := superproperty
theorem subproperty.refl (a : property X) : a ⊆ a := take x, assume H, H
theorem subproperty.trans {a b c : property X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c :=
take x, assume ax, subbc (subab ax)
/-
theorem subproperty.antisymm {a b : property X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb))
-/
-- an alterantive name
/-
theorem eq_of_subproperty_of_subproperty {a b : property X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
subproperty.antisymm h₁ h₂
-/
theorem exteq_of_subproperty_of_subproperty {a b : property X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) :
∀ ⦃x⦄, x ∈ a ↔ x ∈ b :=
λ x, iff.intro (λ h, h₁ h) (λ h, h₂ h)
theorem mem_of_subproperty_of_mem {s₁ s₂ : property X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
assume h₁ h₂, h₁ _ h₂
/- empty property -/
definition empty : property X := λx, false
notation `∅` := property.empty
theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) :=
assume H : x ∈ ∅, false.elim H
theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl
/-
theorem eq_empty_of_forall_not_mem {s : property X} (H : ∀ x, x ∉ s) : s = ∅ :=
ext (take x, iff.intro
(assume xs, absurd xs (H x))
(assume xe, absurd xe (not_mem_empty x)))
-/
theorem ne_empty_of_mem {s : property X} {x : X} (H : x ∈ s) : s ≠ ∅ :=
begin intro Hs, rewrite Hs at H, apply not_mem_empty x H end
theorem empty_subproperty (s : property X) : ∅ ⊆ s :=
take x, assume H, false.elim H
/-theorem eq_empty_of_subproperty_empty {s : property X} (H : s ⊆ ∅) : s = ∅ :=
subproperty.antisymm H (empty_subproperty s)
theorem subproperty_empty_iff (s : property X) : s ⊆ ∅ ↔ s = ∅ :=
iff.intro eq_empty_of_subproperty_empty (take xeq, by rewrite xeq; apply subproperty.refl ∅)
-/
/- universal property -/
definition univ : property X := λx, true
theorem mem_univ (x : X) : x ∈ univ := trivial
theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl
theorem empty_ne_univ [h : inhabited X] : (empty : property X) ≠ univ :=
assume H : empty = univ,
absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty (arbitrary X)))
theorem subproperty_univ (s : property X) : s ⊆ univ := λ x H, trivial
/-
theorem eq_univ_of_univ_subproperty {s : property X} (H : univ ⊆ s) : s = univ :=
eq_of_subproperty_of_subproperty (subproperty_univ s) H
-/
/-
theorem eq_univ_of_forall {s : property X} (H : ∀ x, x ∈ s) : s = univ :=
ext (take x, iff.intro (assume H', trivial) (assume H', H x))
-/
/- union -/
definition union (a b : property X) : property X := λx, x ∈ a ∨ x ∈ b
notation a ∪ b := union a b
theorem mem_union_left {x : X} {a : property X} (b : property X) : x ∈ a → x ∈ a ∪ b :=
assume h, or.inl h
theorem mem_union_right {x : X} {b : property X} (a : property X) : x ∈ b → x ∈ a ∪ b :=
assume h, or.inr h
theorem mem_unionl {x : X} {a b : property X} : x ∈ a → x ∈ a ∪ b :=
assume h, or.inl h
theorem mem_unionr {x : X} {a b : property X} : x ∈ b → x ∈ a ∪ b :=
assume h, or.inr h
theorem mem_or_mem_of_mem_union {x : X} {a b : property X} (H : x ∈ a ∪ b) : x ∈ a ∨ x ∈ b := H
theorem mem_union.elim {x : X} {a b : property X} {P : Prop}
(H₁ : x ∈ a ∪ b) (H₂ : x ∈ a → P) (H₃ : x ∈ b → P) : P :=
or.elim H₁ H₂ H₃
theorem mem_union_iff (x : X) (a b : property X) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := !iff.refl
theorem mem_union_eq (x : X) (a b : property X) : x ∈ a ∪ b = (x ∈ a ∨ x ∈ b) := rfl
--theorem union_self (a : property X) : a ∪ a = a :=
--ext (take x, !or_self)
--theorem union_empty (a : property X) : a ∪ ∅ = a :=
--ext (take x, !or_false)
--theorem empty_union (a : property X) : ∅ ∪ a = a :=
--ext (take x, !false_or)
--theorem union_comm (a b : property X) : a ∪ b = b ∪ a :=
--ext (take x, or.comm)
--theorem union_assoc (a b c : property X) : (a ∪ b) ∪ c = a ∪ (b ∪ c) :=
--ext (take x, or.assoc)
--theorem union_left_comm (s₁ s₂ s₃ : property X) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) :=
--!left_comm union_comm union_assoc s₁ s₂ s₃
--theorem union_right_comm (s₁ s₂ s₃ : property X) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ :=
--!right_comm union_comm union_assoc s₁ s₂ s₃
theorem subproperty_union_left (s t : property X) : s ⊆ s ∪ t := λ x H, or.inl H
theorem subproperty_union_right (s t : property X) : t ⊆ s ∪ t := λ x H, or.inr H
theorem union_subproperty {s t r : property X} (sr : s ⊆ r) (tr : t ⊆ r) : s ∪ t ⊆ r :=
λ x xst, or.elim xst (λ xs, sr xs) (λ xt, tr xt)
/- intersection -/
definition inter (a b : property X) : property X := λx, x ∈ a ∧ x ∈ b
notation a ∩ b := inter a b
theorem mem_inter_iff (x : X) (a b : property X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl
theorem mem_inter_eq (x : X) (a b : property X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl
theorem mem_inter {x : X} {a b : property X} (Ha : x ∈ a) (Hb : x ∈ b) : x ∈ a ∩ b :=
and.intro Ha Hb
theorem mem_of_mem_inter_left {x : X} {a b : property X} (H : x ∈ a ∩ b) : x ∈ a :=
and.left H
theorem mem_of_mem_inter_right {x : X} {a b : property X} (H : x ∈ a ∩ b) : x ∈ b :=
and.right H
--theorem inter_self (a : property X) : a ∩ a = a :=
--ext (take x, !and_self)
--theorem inter_empty (a : property X) : a ∩ ∅ = ∅ :=
--ext (take x, !and_false)
--theorem empty_inter (a : property X) : ∅ ∩ a = ∅ :=
--ext (take x, !false_and)
--theorem nonempty_of_inter_nonempty_right {T : Type} {s t : property T} (H : s ∩ t ≠ ∅) : t ≠ ∅ :=
--suppose t = ∅,
--have s ∩ t = ∅, by rewrite this; apply inter_empty,
--H this
--theorem nonempty_of_inter_nonempty_left {T : Type} {s t : property T} (H : s ∩ t ≠ ∅) : s ≠ ∅ :=
--suppose s = ∅,
--have s ∩ t = ∅, by rewrite this; apply empty_inter,
--H this
--theorem inter_comm (a b : property X) : a ∩ b = b ∩ a :=
--ext (take x, !and.comm)
--theorem inter_assoc (a b c : property X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) :=
--ext (take x, !and.assoc)
--theorem inter_left_comm (s₁ s₂ s₃ : property X) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) :=
--!left_comm inter_comm inter_assoc s₁ s₂ s₃
--theorem inter_right_comm (s₁ s₂ s₃ : property X) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ :=
--!right_comm inter_comm inter_assoc s₁ s₂ s₃
--theorem inter_univ (a : property X) : a ∩ univ = a :=
--ext (take x, !and_true)
--theorem univ_inter (a : property X) : univ ∩ a = a :=
--ext (take x, !true_and)
theorem inter_subproperty_left (s t : property X) : s ∩ t ⊆ s := λ x H, and.left H
theorem inter_subproperty_right (s t : property X) : s ∩ t ⊆ t := λ x H, and.right H
theorem inter_subproperty_inter_right {s t : property X} (u : property X) (H : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
take x, assume xsu, and.intro (H (and.left xsu)) (and.right xsu)
theorem inter_subproperty_inter_left {s t : property X} (u : property X) (H : s ⊆ t) : u ∩ s ⊆ u ∩ t :=
take x, assume xus, and.intro (and.left xus) (H (and.right xus))
theorem subproperty_inter {s t r : property X} (rs : r ⊆ s) (rt : r ⊆ t) : r ⊆ s ∩ t :=
λ x xr, and.intro (rs xr) (rt xr)
--theorem not_mem_of_mem_of_not_mem_inter_left {s t : property X} {x : X} (Hxs : x ∈ s) (Hnm : x ∉ s ∩ t) : x ∉ t :=
-- suppose x ∈ t,
-- have x ∈ s ∩ t, from and.intro Hxs this,
-- show false, from Hnm this
--theorem not_mem_of_mem_of_not_mem_inter_right {s t : property X} {x : X} (Hxs : x ∈ t) (Hnm : x ∉ s ∩ t) : x ∉ s :=
-- suppose x ∈ s,
-- have x ∈ s ∩ t, from and.intro this Hxs,
-- show false, from Hnm this
/- distributivity laws -/
--theorem inter_distrib_left (s t u : property X) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) :=
--ext (take x, !and.left_distrib)
--theorem inter_distrib_right (s t u : property X) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) :=
--ext (take x, !and.right_distrib)
--theorem union_distrib_left (s t u : property X) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) :=
--ext (take x, !or.left_distrib)
--theorem union_distrib_right (s t u : property X) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) :=
--ext (take x, !or.right_distrib)
/- property-builder notation -/
-- {x : X | P}
definition property_of (P : X → Prop) : property X := P
notation `{` binder ` | ` r:(scoped:1 P, property_of P) `}` := r
theorem mem_property_of {P : X → Prop} {a : X} (h : P a) : a ∈ {x | P x} := h
theorem of_mem_property_of {P : X → Prop} {a : X} (h : a ∈ {x | P x}) : P a := h
-- {x ∈ s | P}
definition sep (P : X → Prop) (s : property X) : property X := λx, x ∈ s ∧ P x
notation `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r
/- insert -/
definition insert (x : X) (a : property X) : property X := {y : X | y = x ∨ y ∈ a}
abbreviation insert_same_level.{u} := @insert.{u u}
-- '{x, y, z}
notation `'{`:max a:(foldr `, ` (x b, insert_same_level x b) ∅) `}`:0 := a
theorem subproperty_insert (x : X) (a : property X) : a ⊆ insert x a :=
take y, assume ys, or.inr ys
theorem mem_insert (x : X) (s : property X) : x ∈ insert x s :=
or.inl rfl
theorem mem_insert_of_mem {x : X} {s : property X} (y : X) : x ∈ s → x ∈ insert y s :=
assume h, or.inr h
theorem eq_or_mem_of_mem_insert {x a : X} {s : property X} : x ∈ insert a s → x = a ∨ x ∈ s :=
assume h, h
/- singleton -/
open trunc_index
theorem mem_singleton_iff {X : Type} [is_set X] (a b : X) : a ∈ '{b} ↔ a = b :=
iff.intro
(assume ainb, or.elim ainb (λ aeqb, aeqb) (λ f, false.elim f))
(assume aeqb, or.inl aeqb)
theorem mem_singleton (a : X) : a ∈ '{a} := !mem_insert
theorem eq_of_mem_singleton {X : Type} [is_set X] {x y : X} (h : x ∈ '{y}) : x = y :=
or.elim (eq_or_mem_of_mem_insert h)
(suppose x = y, this)
(suppose x ∈ ∅, absurd this (not_mem_empty x))
theorem mem_singleton_of_eq {x y : X} (H : x = y) : x ∈ '{y} :=
eq.symm H ▸ mem_singleton y
/-
theorem insert_eq (x : X) (s : property X) : insert x s = '{x} ∪ s :=
ext (take y, iff.intro
(suppose y ∈ insert x s,
or.elim this (suppose y = x, or.inl (or.inl this)) (suppose y ∈ s, or.inr this))
(suppose y ∈ '{x} ∪ s,
or.elim this
(suppose y ∈ '{x}, or.inl (eq_of_mem_singleton this))
(suppose y ∈ s, or.inr this)))
-/
/-
theorem pair_eq_singleton (a : X) : '{a, a} = '{a} :=
by rewrite [insert_eq_of_mem !mem_singleton]
-/
/-
theorem singleton_ne_empty (a : X) : '{a} ≠ ∅ :=
begin
intro H,
apply not_mem_empty a,
rewrite -H,
apply mem_insert
end
-/
end property