-
Notifications
You must be signed in to change notification settings - Fork 174
/
demo.py
executable file
·288 lines (242 loc) · 11.2 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#!/usr/bin/env python
import os
import json
import torch
import pprint
import argparse
import importlib
import numpy as np
import cv2
import matplotlib
matplotlib.use("Agg")
from config import system_configs
from nnet.py_factory import NetworkFactory
from config import system_configs
from utils import crop_image, normalize_
from external.nms import soft_nms_with_points as soft_nms
from utils.color_map import colormap
from utils.visualize import vis_mask, vis_octagon, vis_ex, vis_class, vis_bbox
from dextr import Dextr
torch.backends.cudnn.benchmark = False
class_name = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack',
'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass',
'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]
image_ext = ['jpg', 'jpeg', 'png', 'webp']
def parse_args():
parser = argparse.ArgumentParser(description="Demo CornerNet")
parser.add_argument("--cfg_file", help="config file",
default='ExtremeNet', type=str)
parser.add_argument("--demo", help="demo image path or folders",
default="", type=str)
parser.add_argument("--model_path",
default='cache/ExtremeNet_250000.pkl')
parser.add_argument("--show_mask", action='store_true',
help="Run Deep extreme cut to obtain accurate mask")
args = parser.parse_args()
return args
def _rescale_dets(detections, ratios, borders, sizes):
xs, ys = detections[..., 0:4:2], detections[..., 1:4:2]
xs /= ratios[:, 1][:, None, None]
ys /= ratios[:, 0][:, None, None]
xs -= borders[:, 2][:, None, None]
ys -= borders[:, 0][:, None, None]
np.clip(xs, 0, sizes[:, 1][:, None, None], out=xs)
np.clip(ys, 0, sizes[:, 0][:, None, None], out=ys)
def _rescale_ex_pts(detections, ratios, borders, sizes):
xs, ys = detections[..., 5:13:2], detections[..., 6:13:2]
xs /= ratios[:, 1][:, None, None]
ys /= ratios[:, 0][:, None, None]
xs -= borders[:, 2][:, None, None]
ys -= borders[:, 0][:, None, None]
np.clip(xs, 0, sizes[:, 1][:, None, None], out=xs)
np.clip(ys, 0, sizes[:, 0][:, None, None], out=ys)
def _box_inside(box2, box1):
inside = (box2[0] >= box1[0] and box2[1] >= box1[1] and \
box2[2] <= box1[2] and box2[3] <= box1[3])
return inside
def kp_decode(nnet, images, K, kernel=3, aggr_weight=0.1,
scores_thresh=0.1, center_thresh=0.1, debug=False):
detections = nnet.test(
[images], kernel=kernel, aggr_weight=aggr_weight,
scores_thresh=scores_thresh, center_thresh=center_thresh, debug=debug)
detections = detections.data.cpu().numpy()
return detections
if __name__ == "__main__":
args = parse_args()
cfg_file = os.path.join(
system_configs.config_dir, args.cfg_file + ".json")
print("cfg_file: {}".format(cfg_file))
with open(cfg_file, "r") as f:
configs = json.load(f)
configs["system"]["snapshot_name"] = args.cfg_file
system_configs.update_config(configs["system"])
print("system config...")
pprint.pprint(system_configs.full)
print("loading parameters: {}".format(args.model_path))
print("building neural network...")
nnet = NetworkFactory(None)
print("loading parameters...")
nnet.load_pretrained_params(args.model_path)
nnet.cuda()
nnet.eval_mode()
K = configs["db"]["top_k"]
aggr_weight = configs["db"]["aggr_weight"]
scores_thresh = configs["db"]["scores_thresh"]
center_thresh = configs["db"]["center_thresh"]
suppres_ghost = True
nms_kernel = 3
scales = configs["db"]["test_scales"]
weight_exp = 8
categories = configs["db"]["categories"]
nms_threshold = configs["db"]["nms_threshold"]
max_per_image = configs["db"]["max_per_image"]
nms_algorithm = {
"nms": 0,
"linear_soft_nms": 1,
"exp_soft_nms": 2
}["exp_soft_nms"]
if args.show_mask:
dextr = Dextr()
mean = np.array([0.40789654, 0.44719302, 0.47026115], dtype=np.float32)
std = np.array([0.28863828, 0.27408164, 0.27809835], dtype=np.float32)
top_bboxes = {}
if os.path.isdir(args.demo):
image_names = []
ls = os.listdir(args.demo)
for file_name in sorted(ls):
ext = file_name[file_name.rfind('.') + 1:].lower()
if ext in image_ext:
image_names.append(os.path.join(args.demo, file_name))
else:
image_names = [args.demo]
for image_id, image_name in enumerate(image_names):
print('Running ', image_name)
image = cv2.imread(image_name)
height, width = image.shape[0:2]
detections = []
for scale in scales:
new_height = int(height * scale)
new_width = int(width * scale)
new_center = np.array([new_height // 2, new_width // 2])
inp_height = new_height | 127
inp_width = new_width | 127
images = np.zeros((1, 3, inp_height, inp_width), dtype=np.float32)
ratios = np.zeros((1, 2), dtype=np.float32)
borders = np.zeros((1, 4), dtype=np.float32)
sizes = np.zeros((1, 2), dtype=np.float32)
out_height, out_width = (inp_height + 1) // 4, (inp_width + 1) // 4
height_ratio = out_height / inp_height
width_ratio = out_width / inp_width
resized_image = cv2.resize(image, (new_width, new_height))
resized_image, border, offset = crop_image(
resized_image, new_center, [inp_height, inp_width])
resized_image = resized_image / 255.
normalize_(resized_image, mean, std)
images[0] = resized_image.transpose((2, 0, 1))
borders[0] = border
sizes[0] = [int(height * scale), int(width * scale)]
ratios[0] = [height_ratio, width_ratio]
images = np.concatenate((images, images[:, :, :, ::-1]), axis=0)
images = torch.from_numpy(images)
dets = kp_decode(
nnet, images, K, aggr_weight=aggr_weight,
scores_thresh=scores_thresh, center_thresh=center_thresh,
kernel=nms_kernel, debug=True)
dets = dets.reshape(2, -1, 14)
dets[1, :, [0, 2]] = out_width - dets[1, :, [2, 0]]
dets[1, :, [5, 7, 9, 11]] = out_width - dets[1, :, [5, 7, 9, 11]]
dets[1, :, [7, 8, 11, 12]] = dets[1, :, [11, 12, 7, 8]].copy()
dets = dets.reshape(1, -1, 14)
_rescale_dets(dets, ratios, borders, sizes)
_rescale_ex_pts(dets, ratios, borders, sizes)
dets[:, :, 0:4] /= scale
dets[:, :, 5:13] /= scale
detections.append(dets)
detections = np.concatenate(detections, axis=1)
classes = detections[..., -1]
classes = classes[0]
detections = detections[0]
# reject detections with negative scores
keep_inds = (detections[:, 4] > 0)
detections = detections[keep_inds]
classes = classes[keep_inds]
top_bboxes[image_id] = {}
for j in range(categories):
keep_inds = (classes == j)
top_bboxes[image_id][j + 1] = \
detections[keep_inds].astype(np.float32)
soft_nms(top_bboxes[image_id][j + 1],
Nt=nms_threshold, method=nms_algorithm)
scores = np.hstack([
top_bboxes[image_id][j][:, 4]
for j in range(1, categories + 1)
])
if len(scores) > max_per_image:
kth = len(scores) - max_per_image
thresh = np.partition(scores, kth)[kth]
for j in range(1, categories + 1):
keep_inds = (top_bboxes[image_id][j][:, 4] >= thresh)
top_bboxes[image_id][j] = top_bboxes[image_id][j][keep_inds]
if suppres_ghost:
for j in range(1, categories + 1):
n = len(top_bboxes[image_id][j])
for k in range(n):
inside_score = 0
if top_bboxes[image_id][j][k, 4] > 0.2:
for t in range(n):
if _box_inside(top_bboxes[image_id][j][t],
top_bboxes[image_id][j][k]):
inside_score += top_bboxes[image_id][j][t, 4]
if inside_score > top_bboxes[image_id][j][k, 4] * 3:
top_bboxes[image_id][j][k, 4] /= 2
if 1: # visualize
color_list = colormap(rgb=True)
mask_color_id = 0
image = cv2.imread(image_name)
input_image = image.copy()
mask_image = image.copy()
bboxes = {}
for j in range(1, categories + 1):
keep_inds = (top_bboxes[image_id][j][:, 4] > 0.5)
cat_name = class_name[j]
for bbox in top_bboxes[image_id][j][keep_inds]:
sc = bbox[4]
ex = bbox[5:13].astype(np.int32).reshape(4, 2)
bbox = bbox[0:4].astype(np.int32)
txt = '{}{:.2f}'.format(cat_name, sc)
color_mask = color_list[mask_color_id % len(color_list), :3]
mask_color_id += 1
image = vis_bbox(image,
(bbox[0], bbox[1],
bbox[2] - bbox[0], bbox[3] - bbox[1]))
image = vis_class(image,
(bbox[0], bbox[1] - 2), txt)
image = vis_octagon(
image, ex, color_mask)
image = vis_ex(image, ex, color_mask)
if args.show_mask:
mask = dextr.segment(input_image[:, :, ::-1], ex) # BGR to RGB
mask = np.asfortranarray(mask.astype(np.uint8))
mask_image = vis_bbox(mask_image,
(bbox[0], bbox[1],
bbox[2] - bbox[0],
bbox[3] - bbox[1]))
mask_image = vis_class(mask_image,
(bbox[0], bbox[1] - 2), txt)
mask_image = vis_mask(mask_image, mask, color_mask)
if args.show_mask:
cv2.imshow('mask', mask_image)
cv2.imshow('out', image)
cv2.waitKey()