Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RuntimeError: cuDNN error: CUDNN_STATUS_MAPPING_ERROR #267

Open
k1234567jkldhd opened this issue Mar 20, 2022 · 2 comments
Open

RuntimeError: cuDNN error: CUDNN_STATUS_MAPPING_ERROR #267

k1234567jkldhd opened this issue Mar 20, 2022 · 2 comments

Comments

@k1234567jkldhd
Copy link

Input the command:
python demo.py tracking,ddd --load_model ../models/nuScenes_3Dtracking.pth --dataset nuscenes --pre_hm --track_thresh 0.1 --demo ../videos/nuscenes_mini.mp4 --test_focal_length 633
result:
/home/h/anaconda3/envs/CenterTrack/lib/python3.6/site-packages/sklearn/utils/linear_assignment_.py:22: FutureWarning: The linear_assignment_ module is deprecated in 0.21 and will be removed from 0.23. Use scipy.optimize.linear_sum_assignment instead.
FutureWarning)
Running tracking
Using tracking threshold for out threshold! 0.1
Fix size testing.
training chunk_sizes: [32]
input h w: 448 800
heads {'hm': 10, 'reg': 2, 'wh': 2, 'tracking': 2, 'dep': 1, 'rot': 8, 'dim': 3, 'amodel_offset': 2}
weights {'hm': 1, 'reg': 1, 'wh': 0.1, 'tracking': 1, 'dep': 1, 'rot': 1, 'dim': 1, 'amodel_offset': 1}
head conv {'hm': [256], 'reg': [256], 'wh': [256], 'tracking': [256], 'dep': [256], 'rot': [256], 'dim': [256], 'amodel_offset': [256]}
Creating model...
Using node type: (<class 'model.networks.dla.DeformConv'>, <class 'model.networks.dla.DeformConv'>)
Warning: No ImageNet pretrain!!
loaded ../models/nuScenes_3Dtracking.pth, epoch 70
out_name nuscenes_mini.mp4
Initialize tracking!
Traceback (most recent call last):
File "demo.py", line 128, in
demo(opt)
File "demo.py", line 83, in demo
ret = detector.run(img)
File "/home/h/CenterTrack/src/lib/detector.py", line 119, in run
images, self.pre_images, pre_hms, pre_inds, return_time=True)
File "/home/h/CenterTrack/src/lib/detector.py", line 339, in process
output = self.model(images, pre_images, pre_hms)[-1]
File "/home/h/anaconda3/envs/CenterTrack/lib/python3.6/site-packages/torch/nn/modules/module.py", line 547, in call
result = self.forward(*input, **kwargs)
File "/home/h/CenterTrack/src/lib/model/networks/base_model.py", line 75, in forward
feats = self.imgpre2feats(x, pre_img, pre_hm)
File "/home/h/CenterTrack/src/lib/model/networks/dla.py", line 631, in imgpre2feats
x = self.base(x, pre_img, pre_hm)
File "/home/h/anaconda3/envs/CenterTrack/lib/python3.6/site-packages/torch/nn/modules/module.py", line 547, in call
result = self.forward(*input, **kwargs)
File "/home/h/CenterTrack/src/lib/model/networks/dla.py", line 307, in forward
x = self.base_layer(x)
File "/home/h/anaconda3/envs/CenterTrack/lib/python3.6/site-packages/torch/nn/modules/module.py", line 547, in call
result = self.forward(*input, **kwargs)
File "/home/h/anaconda3/envs/CenterTrack/lib/python3.6/site-packages/torch/nn/modules/container.py", line 92, in forward
input = module(input)
File "/home/h/anaconda3/envs/CenterTrack/lib/python3.6/site-packages/torch/nn/modules/module.py", line 547, in call
result = self.forward(*input, **kwargs)
File "/home/h/anaconda3/envs/CenterTrack/lib/python3.6/site-packages/torch/nn/modules/conv.py", line 343, in forward
return self.conv2d_forward(input, self.weight)
File "/home/h/anaconda3/envs/CenterTrack/lib/python3.6/site-packages/torch/nn/modules/conv.py", line 340, in conv2d_forward
self.padding, self.dilation, self.groups)
RuntimeError: cuDNN error: CUDNN_STATUS_MAPPING_ERROR

The code was tested on Ubuntu 20.04, with [Anaconda] Python 3.6, CUDA 10.0, and [PyTorch]v1.10.2.

@unbeliveyu
Copy link

Have you solved this problem

@bryanbocao
Copy link

bryanbocao commented Mar 12, 2023

@unbeliveyu Try using Docker:
https://github.com/bryanbocao/CenterTrack/blob/master/readme/Docker.md
#290

Run CenterTrack using Docker

DCNv2 Compilation Issue Fixed

docker pull bryanbocao/centertrack
docker run -d --ipc=host --shm-size=16384m -it -v /:/share --gpus all --network=bridge bryanbocao/centertrack /bin/bash
docker ps -a

Check <CONTAINER_ID>:

CONTAINER ID   IMAGE                    COMMAND                  CREATED          STATUS                       PORTS                NAMES
89bb79551ccb   bryanbocao/centertrack   "/usr/local/bin/nvid…"   49 seconds ago   Up 38 seconds                6006/tcp, 8888/tcp   competent_northcutt
docker exec -it <CONTAINE_ID> /bin/bash
docker exec -it 89bb79551ccb /bin/bash

Inside the container:

cd /root/CenterTrack/src/lib/model/networks/DCNv2
python3 setup.py build develop
cd /root/CenterTrack/src/
python3 demo.py tracking,ddd --load_model ../models/nuScenes_3Dtracking.pth --dataset nuscenes --pre_hm --track_thresh 0.1 --demo ../videos/nuscenes_mini.mp4 --test_focal_length 633

The DCNv2 is built from MatthewHowe_DCNv2. Thanks MatthewHowe for the contribution.
Then you should be able to see the results.

Go to /share to transfer data between the container and your root system.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants