diff --git a/advanced/apply_ufunc/complex-output-numpy.ipynb b/advanced/apply_ufunc/complex-output-numpy.ipynb index fc26045b..24f90470 100644 --- a/advanced/apply_ufunc/complex-output-numpy.ipynb +++ b/advanced/apply_ufunc/complex-output-numpy.ipynb @@ -33,10 +33,10 @@ "This function expects a 1D array as input, and returns a 1D array as output.\n", "\n", "\n", - "```{tip}Exercise\n", + "```{tip} Exercise\n", "How many core dimensions does `numpy.interp` handle?\n", "```\n", - "```{tip}Solution\n", + "```{tip} Solution\n", ":class:dropdown\n", "\n", "One.\n", @@ -125,8 +125,7 @@ "user_expressions": [] }, "source": [ - "```{tip}Exercise\n", - "\n", + "```{tip} Exercise\n", "\n", "Apply the following function using `apply_ufunc`. It adds a new dimension to the input array, let's call it `newdim`. Specify the new dimension using `output_core_dims`\n", "\n", @@ -134,7 +133,7 @@ "def add_new_dim(array):\n", " return np.expand_dims(array, axis=0)\n", "```\n", - "```{tip}Solution\n", + "```{tip} Solution\n", ":class: dropdown\n", "\n", "```{code-cell} python\n", @@ -320,7 +319,7 @@ "user_expressions": [] }, "source": [ - "```{tip}Exercise\n", + "```{tip} Exercise\n", "\n", "We presented the concept of \"core dimensions\" as the \"smallest unit of data the function could handle.\" Do you understand how the following use of `apply_ufunc` generalizes to an array with more than one dimension? Try it with `air3d = xr.tutorial.load_dataset(\"air_temperature\").air.isel(time=0)`\n", "\n", @@ -333,7 +332,7 @@ ")\n", "```\n", "\n", - "```{tip}Solution\n", + "```{tip} Solution\n", ":class:dropdown\n", "\n", "We want to use `minmax` to compute the minimum and maximum along the \"lat\" dimension always, regardless of how many dimensions are on the input. So we specify `input_core_dims=[[\"lat\"]]`. The output does not contain the \"lat\" dimension, but we expect two returned variables. So we pass an empty list `[]` for each returned array, so `output_core_dims=[[], []]`\n",