-
Notifications
You must be signed in to change notification settings - Fork 344
/
run.py
executable file
·172 lines (145 loc) · 5.86 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python
import os
import json
import pprint as pp
import torch
import torch.optim as optim
from tensorboard_logger import Logger as TbLogger
from nets.critic_network import CriticNetwork
from options import get_options
from train import train_epoch, validate, get_inner_model
from reinforce_baselines import NoBaseline, ExponentialBaseline, CriticBaseline, RolloutBaseline, WarmupBaseline
from nets.attention_model import AttentionModel
from nets.pointer_network import PointerNetwork, CriticNetworkLSTM
from utils import torch_load_cpu, load_problem
def run(opts):
# Pretty print the run args
pp.pprint(vars(opts))
# Set the random seed
torch.manual_seed(opts.seed)
# Optionally configure tensorboard
tb_logger = None
if not opts.no_tensorboard:
tb_logger = TbLogger(os.path.join(opts.log_dir, "{}_{}".format(opts.problem, opts.graph_size), opts.run_name))
os.makedirs(opts.save_dir)
# Save arguments so exact configuration can always be found
with open(os.path.join(opts.save_dir, "args.json"), 'w') as f:
json.dump(vars(opts), f, indent=True)
# Set the device
opts.device = torch.device("cuda:0" if opts.use_cuda else "cpu")
# Figure out what's the problem
problem = load_problem(opts.problem)
# Load data from load_path
load_data = {}
assert opts.load_path is None or opts.resume is None, "Only one of load path and resume can be given"
load_path = opts.load_path if opts.load_path is not None else opts.resume
if load_path is not None:
print(' [*] Loading data from {}'.format(load_path))
load_data = torch_load_cpu(load_path)
# Initialize model
model_class = {
'attention': AttentionModel,
'pointer': PointerNetwork
}.get(opts.model, None)
assert model_class is not None, "Unknown model: {}".format(model_class)
model = model_class(
opts.embedding_dim,
opts.hidden_dim,
problem,
n_encode_layers=opts.n_encode_layers,
mask_inner=True,
mask_logits=True,
normalization=opts.normalization,
tanh_clipping=opts.tanh_clipping,
checkpoint_encoder=opts.checkpoint_encoder,
shrink_size=opts.shrink_size
).to(opts.device)
if opts.use_cuda and torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
# Overwrite model parameters by parameters to load
model_ = get_inner_model(model)
model_.load_state_dict({**model_.state_dict(), **load_data.get('model', {})})
# Initialize baseline
if opts.baseline == 'exponential':
baseline = ExponentialBaseline(opts.exp_beta)
elif opts.baseline == 'critic' or opts.baseline == 'critic_lstm':
assert problem.NAME == 'tsp', "Critic only supported for TSP"
baseline = CriticBaseline(
(
CriticNetworkLSTM(
2,
opts.embedding_dim,
opts.hidden_dim,
opts.n_encode_layers,
opts.tanh_clipping
)
if opts.baseline == 'critic_lstm'
else
CriticNetwork(
2,
opts.embedding_dim,
opts.hidden_dim,
opts.n_encode_layers,
opts.normalization
)
).to(opts.device)
)
elif opts.baseline == 'rollout':
baseline = RolloutBaseline(model, problem, opts)
else:
assert opts.baseline is None, "Unknown baseline: {}".format(opts.baseline)
baseline = NoBaseline()
if opts.bl_warmup_epochs > 0:
baseline = WarmupBaseline(baseline, opts.bl_warmup_epochs, warmup_exp_beta=opts.exp_beta)
# Load baseline from data, make sure script is called with same type of baseline
if 'baseline' in load_data:
baseline.load_state_dict(load_data['baseline'])
# Initialize optimizer
optimizer = optim.Adam(
[{'params': model.parameters(), 'lr': opts.lr_model}]
+ (
[{'params': baseline.get_learnable_parameters(), 'lr': opts.lr_critic}]
if len(baseline.get_learnable_parameters()) > 0
else []
)
)
# Load optimizer state
if 'optimizer' in load_data:
optimizer.load_state_dict(load_data['optimizer'])
for state in optimizer.state.values():
for k, v in state.items():
# if isinstance(v, torch.Tensor):
if torch.is_tensor(v):
state[k] = v.to(opts.device)
# Initialize learning rate scheduler, decay by lr_decay once per epoch!
lr_scheduler = optim.lr_scheduler.LambdaLR(optimizer, lambda epoch: opts.lr_decay ** epoch)
# Start the actual training loop
val_dataset = problem.make_dataset(
size=opts.graph_size, num_samples=opts.val_size, filename=opts.val_dataset, distribution=opts.data_distribution)
if opts.resume:
epoch_resume = int(os.path.splitext(os.path.split(opts.resume)[-1])[0].split("-")[1])
torch.set_rng_state(load_data['rng_state'])
if opts.use_cuda:
torch.cuda.set_rng_state_all(load_data['cuda_rng_state'])
# Set the random states
# Dumping of state was done before epoch callback, so do that now (model is loaded)
baseline.epoch_callback(model, epoch_resume)
print("Resuming after {}".format(epoch_resume))
opts.epoch_start = epoch_resume + 1
if opts.eval_only:
validate(model, val_dataset, opts)
else:
for epoch in range(opts.epoch_start, opts.epoch_start + opts.n_epochs):
train_epoch(
model,
optimizer,
baseline,
lr_scheduler,
epoch,
val_dataset,
problem,
tb_logger,
opts
)
if __name__ == "__main__":
run(get_options())