forked from XifengGuo/CapsNet-Keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
capsulenet.py
256 lines (211 loc) · 11.3 KB
/
capsulenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
"""
Keras implementation of CapsNet in Hinton's paper Dynamic Routing Between Capsules.
The current version maybe only works for TensorFlow backend. Actually it will be straightforward to re-write to TF code.
Adopting to other backends should be easy, but I have not tested this.
Usage:
python capsulenet.py
python capsulenet.py --epochs 50
python capsulenet.py --epochs 50 --routings 3
... ...
Result:
Validation accuracy > 99.5% after 20 epochs. Converge to 99.66% after 50 epochs.
About 110 seconds per epoch on a single GTX1070 GPU card
Author: Xifeng Guo, E-mail: `[email protected]`, Github: `https://github.com/XifengGuo/CapsNet-Keras`
"""
import numpy as np
from keras import layers, models, optimizers
from keras import backend as K
from keras.utils import to_categorical
import matplotlib.pyplot as plt
from utils import combine_images
from PIL import Image
from capsulelayers import CapsuleLayer, PrimaryCap, Length, Mask
K.set_image_data_format('channels_last')
def CapsNet(input_shape, n_class, routings):
"""
A Capsule Network on MNIST.
:param input_shape: data shape, 3d, [width, height, channels]
:param n_class: number of classes
:param routings: number of routing iterations
:return: Two Keras Models, the first one used for training, and the second one for evaluation.
`eval_model` can also be used for training.
"""
x = layers.Input(shape=input_shape)
# Layer 1: Just a conventional Conv2D layer
conv1 = layers.Conv2D(filters=256, kernel_size=9, strides=1, padding='valid', activation='relu', name='conv1')(x)
# Layer 2: Conv2D layer with `squash` activation, then reshape to [None, num_capsule, dim_capsule]
primarycaps = PrimaryCap(conv1, dim_capsule=8, n_channels=32, kernel_size=9, strides=2, padding='valid')
# Layer 3: Capsule layer. Routing algorithm works here.
digitcaps = CapsuleLayer(num_capsule=n_class, dim_capsule=16, routings=routings,
name='digitcaps')(primarycaps)
# Layer 4: This is an auxiliary layer to replace each capsule with its length. Just to match the true label's shape.
# If using tensorflow, this will not be necessary. :)
out_caps = Length(name='capsnet')(digitcaps)
# Decoder network.
y = layers.Input(shape=(n_class,))
masked_by_y = Mask()([digitcaps, y]) # The true label is used to mask the output of capsule layer. For training
masked = Mask()(digitcaps) # Mask using the capsule with maximal length. For prediction
# Shared Decoder model in training and prediction
decoder = models.Sequential(name='decoder')
decoder.add(layers.Dense(512, activation='relu', input_dim=16*n_class))
decoder.add(layers.Dense(1024, activation='relu'))
decoder.add(layers.Dense(np.prod(input_shape), activation='sigmoid'))
decoder.add(layers.Reshape(target_shape=input_shape, name='out_recon'))
# Models for training and evaluation (prediction)
train_model = models.Model([x, y], [out_caps, decoder(masked_by_y)])
eval_model = models.Model(x, [out_caps, decoder(masked)])
# manipulate model
noise = layers.Input(shape=(n_class, 16))
noised_digitcaps = layers.Add()([digitcaps, noise])
masked_noised_y = Mask()([noised_digitcaps, y])
manipulate_model = models.Model([x, y, noise], decoder(masked_noised_y))
return train_model, eval_model, manipulate_model
def margin_loss(y_true, y_pred):
"""
Margin loss for Eq.(4). When y_true[i, :] contains not just one `1`, this loss should work too. Not test it.
:param y_true: [None, n_classes]
:param y_pred: [None, num_capsule]
:return: a scalar loss value.
"""
L = y_true * K.square(K.maximum(0., 0.9 - y_pred)) + \
0.5 * (1 - y_true) * K.square(K.maximum(0., y_pred - 0.1))
return K.mean(K.sum(L, 1))
def train(model, data, args):
"""
Training a CapsuleNet
:param model: the CapsuleNet model
:param data: a tuple containing training and testing data, like `((x_train, y_train), (x_test, y_test))`
:param args: arguments
:return: The trained model
"""
# unpacking the data
(x_train, y_train), (x_test, y_test) = data
# callbacks
log = callbacks.CSVLogger(args.save_dir + '/log.csv')
tb = callbacks.TensorBoard(log_dir=args.save_dir + '/tensorboard-logs',
batch_size=args.batch_size, histogram_freq=int(args.debug))
checkpoint = callbacks.ModelCheckpoint(args.save_dir + '/weights-{epoch:02d}.h5', monitor='val_capsnet_acc',
save_best_only=True, save_weights_only=True, verbose=1)
lr_decay = callbacks.LearningRateScheduler(schedule=lambda epoch: args.lr * (args.lr_decay ** epoch))
# compile the model
model.compile(optimizer=optimizers.Adam(lr=args.lr),
loss=[margin_loss, 'mse'],
loss_weights=[1., args.lam_recon],
metrics={'capsnet': 'accuracy'})
"""
# Training without data augmentation:
model.fit([x_train, y_train], [y_train, x_train], batch_size=args.batch_size, epochs=args.epochs,
validation_data=[[x_test, y_test], [y_test, x_test]], callbacks=[log, tb, checkpoint, lr_decay])
"""
# Begin: Training with data augmentation ---------------------------------------------------------------------#
def train_generator(x, y, batch_size, shift_fraction=0.):
train_datagen = ImageDataGenerator(width_shift_range=shift_fraction,
height_shift_range=shift_fraction) # shift up to 2 pixel for MNIST
generator = train_datagen.flow(x, y, batch_size=batch_size)
while 1:
x_batch, y_batch = generator.next()
yield ([x_batch, y_batch], [y_batch, x_batch])
# Training with data augmentation. If shift_fraction=0., also no augmentation.
model.fit_generator(generator=train_generator(x_train, y_train, args.batch_size, args.shift_fraction),
steps_per_epoch=int(y_train.shape[0] / args.batch_size),
epochs=args.epochs,
validation_data=[[x_test, y_test], [y_test, x_test]],
callbacks=[log, tb, checkpoint, lr_decay])
# End: Training with data augmentation -----------------------------------------------------------------------#
model.save_weights(args.save_dir + '/trained_model.h5')
print('Trained model saved to \'%s/trained_model.h5\'' % args.save_dir)
from utils import plot_log
plot_log(args.save_dir + '/log.csv', show=True)
return model
def test(model, data, args):
x_test, y_test = data
y_pred, x_recon = model.predict(x_test, batch_size=100)
print('-'*30 + 'Begin: test' + '-'*30)
print('Test acc:', np.sum(np.argmax(y_pred, 1) == np.argmax(y_test, 1))/y_test.shape[0])
img = combine_images(np.concatenate([x_test[:50],x_recon[:50]]))
image = img * 255
Image.fromarray(image.astype(np.uint8)).save(args.save_dir + "/real_and_recon.png")
print()
print('Reconstructed images are saved to %s/real_and_recon.png' % args.save_dir)
print('-' * 30 + 'End: test' + '-' * 30)
plt.imshow(plt.imread(args.save_dir + "/real_and_recon.png"))
plt.show()
def manipulate_latent(model, data, args):
print('-'*30 + 'Begin: manipulate' + '-'*30)
x_test, y_test = data
index = np.argmax(y_test, 1) == args.digit
number = np.random.randint(low=0, high=sum(index) - 1)
x, y = x_test[index][number], y_test[index][number]
x, y = np.expand_dims(x, 0), np.expand_dims(y, 0)
noise = np.zeros([1, 10, 16])
x_recons = []
for dim in range(16):
for r in [-0.25, -0.2, -0.15, -0.1, -0.05, 0, 0.05, 0.1, 0.15, 0.2, 0.25]:
tmp = np.copy(noise)
tmp[:,:,dim] = r
x_recon = model.predict([x, y, tmp])
x_recons.append(x_recon)
x_recons = np.concatenate(x_recons)
img = combine_images(x_recons, height=16)
image = img*255
Image.fromarray(image.astype(np.uint8)).save(args.save_dir + '/manipulate-%d.png' % args.digit)
print('manipulated result saved to %s/manipulate-%d.png' % (args.save_dir, args.digit))
print('-' * 30 + 'End: manipulate' + '-' * 30)
def load_mnist():
# the data, shuffled and split between train and test sets
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1).astype('float32') / 255.
x_test = x_test.reshape(-1, 28, 28, 1).astype('float32') / 255.
y_train = to_categorical(y_train.astype('float32'))
y_test = to_categorical(y_test.astype('float32'))
return (x_train, y_train), (x_test, y_test)
if __name__ == "__main__":
import os
import argparse
from keras.preprocessing.image import ImageDataGenerator
from keras import callbacks
# setting the hyper parameters
parser = argparse.ArgumentParser(description="Capsule Network on MNIST.")
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--batch_size', default=100, type=int)
parser.add_argument('--lr', default=0.001, type=float,
help="Initial learning rate")
parser.add_argument('--lr_decay', default=0.9, type=float,
help="The value multiplied by lr at each epoch. Set a larger value for larger epochs")
parser.add_argument('--lam_recon', default=0.392, type=float,
help="The coefficient for the loss of decoder")
parser.add_argument('-r', '--routings', default=3, type=int,
help="Number of iterations used in routing algorithm. should > 0")
parser.add_argument('--shift_fraction', default=0.1, type=float,
help="Fraction of pixels to shift at most in each direction.")
parser.add_argument('--debug', action='store_true',
help="Save weights by TensorBoard")
parser.add_argument('--save_dir', default='./result')
parser.add_argument('-t', '--testing', action='store_true',
help="Test the trained model on testing dataset")
parser.add_argument('--digit', default=5, type=int,
help="Digit to manipulate")
parser.add_argument('-w', '--weights', default=None,
help="The path of the saved weights. Should be specified when testing")
args = parser.parse_args()
print(args)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# load data
(x_train, y_train), (x_test, y_test) = load_mnist()
# define model
model, eval_model, manipulate_model = CapsNet(input_shape=x_train.shape[1:],
n_class=len(np.unique(np.argmax(y_train, 1))),
routings=args.routings)
model.summary()
# train or test
if args.weights is not None: # init the model weights with provided one
model.load_weights(args.weights)
if not args.testing:
train(model=model, data=((x_train, y_train), (x_test, y_test)), args=args)
else: # as long as weights are given, will run testing
if args.weights is None:
print('No weights are provided. Will test using random initialized weights.')
manipulate_latent(manipulate_model, (x_test, y_test), args)
test(model=eval_model, data=(x_test, y_test), args=args)