参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。
示例 1:
- 输入: amount = 5, coins = [1, 2, 5]
- 输出: 4
解释: 有四种方式可以凑成总金额:
- 5=5
- 5=2+2+1
- 5=2+1+1+1
- 5=1+1+1+1+1
示例 2:
- 输入: amount = 3, coins = [2]
- 输出: 0
- 解释: 只用面额2的硬币不能凑成总金额3。
示例 3:
- 输入: amount = 10, coins = [10]
- 输出: 1
注意,你可以假设:
- 0 <= amount (总金额) <= 5000
- 1 <= coin (硬币面额) <= 5000
- 硬币种类不超过 500 种
- 结果符合 32 位符号整数
《代码随想录》算法视频公开课:装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换II,相信结合视频再看本篇题解,更有助于大家对本题的理解。
这是一道典型的背包问题,一看到钱币数量不限,就知道这是一个完全背包。
对完全背包还不了解的同学,可以看这篇:动态规划:关于完全背包,你该了解这些!
但本题和纯完全背包不一样,纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!
注意题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢?
例如示例一:
5 = 2 + 2 + 1
5 = 2 + 1 + 2
这是一种组合,都是 2 2 1。
如果问的是排列数,那么上面就是两种排列了。
组合不强调元素之间的顺序,排列强调元素之间的顺序。 其实这一点我们在讲解回溯算法专题的时候就讲过了哈。
那我为什么要介绍这些呢,因为这和下文讲解遍历顺序息息相关!
回归本题,动规五步曲来分析如下:
- 确定dp数组以及下标的含义
dp[j]:凑成总金额j的货币组合数为dp[j]
- 确定递推公式
dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。
所以递推公式:dp[j] += dp[j - coins[i]];
这个递推公式大家应该不陌生了,我在讲解01背包题目的时候在这篇494. 目标和中就讲解了,求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]];
- dp数组如何初始化
首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。
那么 dp[0] = 1 有没有含义,其实既可以说 凑成总金额0的货币组合数为1,也可以说 凑成总金额0的货币组合数为0,好像都没有毛病。
但题目描述中,也没明确说 amount = 0 的情况,结果应该是多少。
这里我认为题目描述还是要说明一下,因为后台测试数据是默认,amount = 0 的情况,组合数为1的。
下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]
dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。
- 确定遍历顺序
本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额),还是外层for遍历背包(金钱总额),内层for循环遍历物品(钱币)呢?
我在动态规划:关于完全背包,你该了解这些!中讲解了完全背包的两个for循环的先后顺序都是可以的。
但本题就不行了!
因为纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!
而本题要求凑成总和的组合数,元素之间明确要求没有顺序。
所以纯完全背包是能凑成总和就行,不用管怎么凑的。
本题是求凑出来的方案个数,且每个方案个数是为组合数。
那么本题,两个for循环的先后顺序可就有说法了。
我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。
代码如下:
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
dp[j] += dp[j - coins[i]];
}
}
假设:coins[0] = 1,coins[1] = 5。
那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。
所以这种遍历顺序中dp[j]里计算的是组合数!
如果把两个for交换顺序,代码如下:
for (int j = 0; j <= amount; j++) { // 遍历背包容量
for (int i = 0; i < coins.size(); i++) { // 遍历物品
if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
}
}
背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。
此时dp[j]里算出来的就是排列数!
可能这里很多同学还不是很理解,建议动手把这两种方案的dp数组数值变化打印出来,对比看一看!(实践出真知)
- 举例推导dp数组
输入: amount = 5, coins = [1, 2, 5] ,dp状态图如下:
最后红色框dp[amount]为最终结果。
以上分析完毕,C++代码如下:
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount + 1, 0);
dp[0] = 1;
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
};
- 时间复杂度: O(mn),其中 m 是amount,n 是 coins 的长度
- 空间复杂度: O(m)
是不是发现代码如此精简
本题的递推公式,其实我们在494. 目标和中就已经讲过了,而难点在于遍历顺序!
在求装满背包有几种方案的时候,认清遍历顺序是非常关键的。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
可能说到排列数录友们已经有点懵了,后面Carl还会安排求排列数的题目,到时候在对比一下,大家就会发现神奇所在!
class Solution {
public int change(int amount, int[] coins) {
//递推表达式
int[] dp = new int[amount + 1];
//初始化dp数组,表示金额为0时只有一种情况,也就是什么都不装
dp[0] = 1;
for (int i = 0; i < coins.length; i++) {
for (int j = coins[i]; j <= amount; j++) {
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
}
// 二维dp数组版本,方便理解
class Solution {
public int change(int amount, int[] coins) {
int[][] dp = new int[coins.length][amount + 1];
// 只有一种硬币的情况
for (int i = 0; i <= amount; i += coins[0]) {
dp[0][i] = 1;
}
for (int i = 1; i < coins.length; i++) {
for (int j = 0; j <= amount; j++) {
// 第i种硬币使用0~k次,求和
for (int k = 0; k * coins[i] <= j; k++) {
dp[i][j] += dp[i - 1][j - k * coins[i]];
}
}
}
return dp[coins.length - 1][amount];
}
}
class Solution:
def change(self, amount: int, coins: List[int]) -> int:
dp = [0]*(amount + 1)
dp[0] = 1
# 遍历物品
for i in range(len(coins)):
# 遍历背包
for j in range(coins[i], amount + 1):
dp[j] += dp[j - coins[i]]
return dp[amount]
func change(amount int, coins []int) int {
// 定义dp数组
dp := make([]int, amount+1)
// 初始化,0大小的背包, 当然是不装任何东西了, 就是1种方法
dp[0] = 1
// 遍历顺序
// 遍历物品
for i := 0 ;i < len(coins);i++ {
// 遍历背包
for j:= coins[i] ; j <= amount ;j++ {
// 推导公式
dp[j] += dp[j-coins[i]]
}
}
return dp[amount]
}
impl Solution {
pub fn change(amount: i32, coins: Vec<i32>) -> i32 {
let amount = amount as usize;
let mut dp = vec![0; amount + 1];
dp[0] = 1;
for coin in coins {
for j in coin as usize..=amount {
dp[j] += dp[j - coin as usize];
}
}
dp[amount]
}
}
const change = (amount, coins) => {
let dp = Array(amount + 1).fill(0);
dp[0] = 1;
for(let i =0; i < coins.length; i++) {
for(let j = coins[i]; j <= amount; j++) {
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
function change(amount: number, coins: number[]): number {
const dp: number[] = new Array(amount + 1).fill(0);
dp[0] = 1;
for (let i = 0, length = coins.length; i < length; i++) {
for (let j = coins[i]; j <= amount; j++) {
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
};
object Solution {
def change(amount: Int, coins: Array[Int]): Int = {
var dp = new Array[Int](amount + 1)
dp(0) = 1
for (i <- 0 until coins.length) {
for (j <- coins(i) to amount) {
dp(j) += dp(j - coins(i))
}
}
dp(amount)
}
}