diff --git a/src/sage/algebras/lie_algebras/representation.py b/src/sage/algebras/lie_algebras/representation.py index e4d7df8b838..d76540147b8 100644 --- a/src/sage/algebras/lie_algebras/representation.py +++ b/src/sage/algebras/lie_algebras/representation.py @@ -808,17 +808,18 @@ class FaithfulRepresentationPBWPosChar(CombinatorialFreeModule, Representation_a We implement the algorithm given in [deG2000] Section 6.6. Let `L` be a finite dimensional Lie algebra over a ring of characteristic `p` with basis `(b_1, \ldots, b_n)`. We compute (monic) `p`-polynomials - `f_i` such that `A = \mathrm{ad}(b_i)` solves `f_i(A) = 0` by using - minimal polynomial of `A`. The `(f_1, \ldots, f_n)` is a Gröbner basis - for an ideal `I` of the universal enveloping algebra `U(L)` such that - the quotient `U(L) / I` is a faithful representation of `L`. + `f_i` such that `A = \mathrm{ad}(b_i)` (the adjoint action of `b_i`) + solves `f_i(A) = 0` by using minimal polynomial of `A`. The + `(f_1, \ldots, f_n)` is a Gröbner basis for an ideal `I` of the + universal enveloping algebra `U(L)` such that the quotient `U(L) / I` + is a faithful representation of `L`. EXAMPLES:: sage: sl2 = LieAlgebra(GF(3), cartan_type=['A',1]) sage: F = sl2.faithful_representation() sage: F - Faithful representation with p-multiplicies (1, 3, 1) of Lie algebra + Faithful representation with p-multiplicities (1, 3, 1) of Lie algebra of ['A', 1] in the Chevalley basis sage: F.dimension() 243 @@ -881,10 +882,10 @@ def _repr_(self): sage: sl3 = LieAlgebra(GF(3), cartan_type=['A',2]) sage: sl3.faithful_representation() - Faithful representation with p-multiplicies (1, 1, 1, 3, 3, 1, 1, 1) + Faithful representation with p-multiplicities (1, 1, 1, 3, 3, 1, 1, 1) of Lie algebra of ['A', 2] in the Chevalley basis """ - return "Faithful representation with p-multiplicies {} of {}".format(self.p_exponents(), self._lie_algebra) + return "Faithful representation with p-multiplicities {} of {}".format(self.p_exponents(), self._lie_algebra) def _latex_(self): r"""