From 721b9521e5a85fdcb46449b5dd22d01379d5c0f6 Mon Sep 17 00:00:00 2001 From: Travis Scrimshaw Date: Fri, 17 Nov 2023 10:42:11 +0900 Subject: [PATCH] Addressing reviewer comments. --- src/sage/combinat/partition.py | 4 ++-- src/sage/combinat/specht_module.py | 18 ++++++++++++++++-- src/sage/combinat/symmetric_group_algebra.py | 4 ++++ 3 files changed, 22 insertions(+), 4 deletions(-) diff --git a/src/sage/combinat/partition.py b/src/sage/combinat/partition.py index 064d7606222..7d16d5d3410 100644 --- a/src/sage/combinat/partition.py +++ b/src/sage/combinat/partition.py @@ -5538,8 +5538,8 @@ def simple_module_dimension(self, base_ring=None): r""" Return the dimension of the simple module corresponding to ``self``. - This is equal to the dimension of the Specht module over a field - of characteristic `0`. + When the base ring is a field of characteristic `0`, this is equal + to the dimension of the Specht module. INPUT: diff --git a/src/sage/combinat/specht_module.py b/src/sage/combinat/specht_module.py index be38fbb2c67..62842b11a30 100644 --- a/src/sage/combinat/specht_module.py +++ b/src/sage/combinat/specht_module.py @@ -475,7 +475,7 @@ def polytabloid(T): OUTPUT: - A ``dict`` whose keys are taboids represented by tuples of frozensets + A ``dict`` whose keys are tabloids represented by tuples of frozensets and whose values are the coefficient. EXAMPLES:: @@ -505,7 +505,7 @@ def tabloid_gram_matrix(la, base_ring): pulled back from the tabloid module. For the module spanned by all tabloids, we define an bilinear form - by having the taboids be an orthonormal basis. We then pull this + by having the tabloids be an orthonormal basis. We then pull this bilinear form back across the natural injection of the Specht module into the tabloid module. @@ -541,6 +541,20 @@ def simple_module_rank(la, base_ring): sage: from sage.combinat.specht_module import simple_module_rank sage: simple_module_rank([3,2,1,1], GF(3)) 13 + + TESTS:: + + sage: from sage.combinat.specht_module import simple_module_rank + sage: simple_module_rank([1,1,1,1], GF(3)) + Traceback (most recent call last): + ... + ValueError: the partition [1, 1, 1, 1] is not 3-regular + + sage: from sage.combinat.specht_module import simple_module_rank + sage: simple_module_rank([2,1], GF(3)['x']) + Traceback (most recent call last): + ... + NotImplementedError: the base must be a field """ from sage.categories.fields import Fields from sage.combinat.partition import Partition diff --git a/src/sage/combinat/symmetric_group_algebra.py b/src/sage/combinat/symmetric_group_algebra.py index cb7df991ced..0b4ba3129d9 100644 --- a/src/sage/combinat/symmetric_group_algebra.py +++ b/src/sage/combinat/symmetric_group_algebra.py @@ -1597,6 +1597,10 @@ def simple_module_dimension(self, la): sage: SGA = SymmetricGroupAlgebra(GF(5), 6) sage: SGA.simple_module_dimension(Partition([4,1,1])) 10 + + TESTS:: + + sage: SGA = SymmetricGroupAlgebra(GF(5), 6) sage: SGA.simple_module_dimension(Partition([3,1,1])) Traceback (most recent call last): ...