-
Notifications
You must be signed in to change notification settings - Fork 33
/
partial_sums_of_jordan_totient_function_fast.pl
executable file
·98 lines (73 loc) · 2.55 KB
/
partial_sums_of_jordan_totient_function_fast.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 04 February 2019
# https://github.com/trizen
# A sublinear algorithm for computing the partial sums of the Jordan totient function.
# The partial sums of the Jordan totient function is defined as:
#
# a_m(n) = Sum_{k=1..n} J_m(k)
#
# where J_m(k) is the Jordan totient function.
# Recursive formula:
#
# a_m(n) = F_m(n) - Sum_{k=2..sqrt(n)} a_m(floor(n/k)) - Sum_{k=1..floor(n/sqrt(n))-1} a_m(k) * (floor(n/k) - floor(n/(k+1)))
#
# where F_m(x) are Faulhaber's polynomials.
# Example for a_2(n) = Sum_{k=1..n} J_2(k):
# a_2(10^1) = 312
# a_2(10^2) = 280608
# a_2(10^3) = 277652904
# a_2(10^4) = 277335915120
# a_2(10^5) = 277305865353048
# a_2(10^6) = 277302780859485648
# a_2(10^7) = 277302491422450102032
# a_2(10^8) = 277302460845902192282712
# a_2(10^9) = 277302457878113251222146576
# Asymptotic formula:
# Sum_{k=1..n} J_2(k) ~ n^3 / (3*zeta(3))
# In general, for m>=1:
# Sum_{k=1..n} J_m(k) ~ n^(m+1) / ((m+1) * zeta(m+1))
# OEIS sequences:
# https://oeis.org/A002088 -- Sum of totient function: a(n) = Sum_{k=1..n} phi(k).
# https://oeis.org/A064018 -- Sum of the Euler totients phi for 10^n.
# https://oeis.org/A272718 -- Partial sums of gcd-sum sequence A018804.
# See also:
# https://en.wikipedia.org/wiki/Faulhaber's_formula
# https://en.wikipedia.org/wiki/Dirichlet_hyperbola_method
# https://trizenx.blogspot.com/2018/11/partial-sums-of-arithmetical-functions.html
use 5.020;
use strict;
use warnings;
use experimental qw(signatures);
use Math::GMPz qw();
use Math::AnyNum qw(faulhaber_sum);
use ntheory qw(sqrtint rootint jordan_totient);
sub partial_sums_of_jordan_totient ($n, $m) {
my $s = sqrtint($n);
my $lookup_size = 2 * rootint($n, 3)**2;
my @jordan_sum_lookup = (Math::GMPz->new(0));
foreach my $i (1 .. $lookup_size) {
$jordan_sum_lookup[$i] = $jordan_sum_lookup[$i - 1] + jordan_totient($m, $i);
}
my %seen;
sub ($n) {
if ($n <= $lookup_size) {
return $jordan_sum_lookup[$n];
}
if (exists $seen{$n}) {
return $seen{$n};
}
my $s = sqrtint($n);
my $A = ${faulhaber_sum($n, $m)};
foreach my $k (2 .. int($n / ($s + 1))) {
$A -= __SUB__->(int($n / $k));
}
foreach my $k (1 .. $s) {
$A -= (int($n / $k) - int($n / ($k + 1))) * __SUB__->($k);
}
$seen{$n} = $A;
}->($n);
}
foreach my $n (1 .. 8) { # takes ~1.5 seconds
say "a_2(10^$n) = ", partial_sums_of_jordan_totient(10**$n, 2);
}