-
Notifications
You must be signed in to change notification settings - Fork 33
/
PSW_primality_test.pl
executable file
·70 lines (52 loc) · 1.56 KB
/
PSW_primality_test.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/perl
# The PSW primality test, named after Carl Pomerance, John Selfridge, and Samuel Wagstaff.
# No counter-examples are known to this test.
# Algorithm: given an odd integer n, that is not a perfect power:
# 1. Perform a (strong) base-2 Fermat test.
# 2. Find the first P>0 such that kronecker(P^2 + 4, n) = -1.
# 3. If the Lucas U sequence: U(P, -1, n+1) = 0 (mod n), then n is probably prime.
# See also:
# https://en.wikipedia.org/wiki/Lucas_pseudoprime
# https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test
use 5.020;
use warnings;
use experimental qw(signatures);
use ntheory qw(is_prime is_power lucas_sequence kronecker powmod);
sub findP($n) {
# Find P such that kronecker(P^2 + 4, n) = -1.
for (my $k = 1 ; ; ++$k) {
if (kronecker($k*$k + 4, $n) == -1) {
return $k;
}
}
}
sub PSW_primality_test ($n) {
return 0 if $n <= 1;
return 1 if $n == 2;
return 0 if !($n & 1);
return 0 if is_power($n);
# Fermat base-2 test
powmod(2, $n - 1, $n) == 1 or return 0;
my $P = findP($n);
my $Q = -1;
# If LucasU(P, -1, n+1) = 0 (mod n), then n is probably prime.
(lucas_sequence($n, $P, $Q, $n + 1))[0] == 0;
}
#
## Run some tests
#
my $from = 1;
my $to = 1e6;
my $count = 0;
foreach my $n ($from .. $to) {
if (PSW_primality_test($n)) {
if (not is_prime($n)) {
say "Counter-example: $n";
}
++$count;
}
elsif (is_prime($n)) {
say "Missed a prime: $n";
}
}
say "There are $count primes between $from and $to.";