The Single
tools allow you to export and import individual MLflow objects between tracking servers.
These tools allow you to specify a different destination object name.
For example, if you want to clone the experiment /Mary/Experiment/Iris
under a new name, you can specify the target experiment name as /John/Experiment/Iris
.
See sample JSON export files here.
MLflow Object | Documentation | Code |
---|---|---|
Model | export-model | code |
import-model | code | |
Experiment | export-experiment | code |
import-experiment | code | |
Run | export-run | code |
import-run | code |
Export an experiment to a directory. Accepts either an experiment ID or name.
export-experiment --help
Options:
--experiment TEXT Experiment name or ID. [required]
--output-dir TEXT Output directory. [required]
--export-source-tagss BOOLEAN Export source run information (RunInfo,
MLflow system tags starting with 'mlflow' and
metadata) under the 'mlflow_export_import'
tag prefix. See README.md for more details.
[default: False]
--notebook-formats TEXT Notebook formats. Values are SOURCE, HTML,
JUPYTER or DBC (comma seperated). [default: ]
Export experiment by experiment ID.
export-experiment \
--experiment 2 \
--output-dir out
Export experiment by experiment name.
export-experiment \
--experiment sklearn-wine \
--output-dir out
See Access the MLflow tracking server from outside Databricks.
export MLFLOW_TRACKING_URI=databricks
export DATABRICKS_HOST=https://mycompany.cloud.databricks.com
export DATABRICKS_TOKEN=MY_TOKEN
export-experiment \
--experiment /Users/[email protected]/SklearnWine \
--output-dir out \
--notebook-formats DBC,SOURCE
The export directory contains a JSON export file for the experiment and a subdirectory for each run. The run directory contains a JSON export file containing run metadata and an artifact folder directory.
Sample export directory
+-experiment.json
+-eb66c160957d4a28b11d3f1b968df9cd/
| +-run.json
| +-artifacts/
| +-plot.png
| +-model/
| +-requirements.txt
| +-python_env.yaml
| +-model.pkl
| +-conda.yaml
| +-MLmodel
Import an experiment from a directory. Reads the manifest file to import the expirement and its runs.
The experiment will be created if it does not exist in the destination tracking server. If the destination experiment already exists, the source runs will be added to it.
import-experiment --help
Options:
--input-dir TEXT Source input directory that contains the
exported run. [required]
--experiment-name TEXT Destination experiment name. [required]
--import-source-tags BOOLEAN Import source information for registered
model and its versions ad tags in
destination object. [default: False]
--mlmodel-fix BOOLEAN Add correct run ID in destination MLmodel
artifact. Can be expensive for deeply nested
artifacts. [default: True]
--use-src-user-id BOOLEAN Set the destination user ID to the source
user ID. Source user ID is ignored when
importing into Databricks since setting it
is not allowed. [default: False]
--dst-notebook-dir TEXT Databricks destination workpsace directory
for notebook import.
--dst-notebook-dir-add-run-id TEXT
Add the run ID to the destination notebook
workspace directory.
--help Show this message and exit.
import-experiment \
--experiment-name imported_sklearn \
--input-dir out
export MLFLOW_TRACKING_URI=databricks
import-experiment \
--experiment-name /Users/[email protected]/imported/SklearnWine \
--input-dir exported_experiments/3532228 \
Export run to directory.
Usage
export-run --help
Options:
--run-id TEXT Run ID. [required]
--output-dir TEXT Output directory. [required]
--notebook-formats TEXT Notebook formats. Values are SOURCE, HTML,
JUPYTER or DBC (comma seperated). [default: ]
Run examples
export-run \
--run-id 50fa90e751eb4b3f9ba9cef0efe8ea30 \
--output-dir out
Produces a directory with the following structure:
+-run.json
+-artifacts/
| +-model/
| +-requirements.txt
| +-python_env.yaml
| +-model.pkl
| +-conda.yaml
| +-MLmodel
Sample run.json files: OSS - Databricks.
Imports a run from a directory.
import-run --help
Options:
--input-dir TEXT Source input directory that contains the
exported run. [required]
--experiment-name TEXT Destination experiment name. [required]
--import-source-tags BOOLEAN Import source information for registered
model and its versions ad tags in
destination object. [default: False]
--mlmodel-fix BOOLEAN Add correct run ID in destination MLmodel
artifact. Can be expensive for deeply nested
artifacts. [default: True]
--use-src-user-id BOOLEAN Set the destination user ID to the source
user ID. Source user ID is ignored when
importing into Databricks since setting it
is not allowed. [default: False]
--dst-notebook-dir TEXT Databricks destination workpsace directory
for notebook import.
--dst-notebook-dir-add-run-id TEXT
Add the run ID to the destination notebook
workspace directory.
export MLFLOW_TRACKING_URI=databricks
import-run \
--run-id 50fa90e751eb4b3f9ba9cef0efe8ea30 \
--input out \
--experiment-name sklearn_wine_imported
export MLFLOW_TRACKING_URI=databricks
run.import-run \
--run-id 50fa90e751eb4b3f9ba9cef0efe8ea30 \
--input out \
--experiment-name /Users/[email protected]/imported/SklearnWine
Export a registered model to a directory.
The default is to export all versions of a model including all None
and Archived
stages.
You can specify a list of stages to export.
Source: export_model.py.
export-model --help
Options:
--input-dir TEXT Input directory produced by export_model.py.
[required]
--model TEXT New registered model name. [required]
--experiment-name TEXT Destination experiment name - will be created
if it does not exist. [required]
--delete-model BOOLEAN If the model exists, first delete the model
and all its versions. [default: False]
--import-source-tags BOOLEAN Import source information for registered model
and its versions ad tags in destination
object. [default: False]
--await-creation-for INTEGER Await creation for specified seconds.
--sleep-time INTEGER Sleep time for polling until
version.status==READY.
--verbose BOOLEAN Verbose. [default: False]
export-model \
--model sklearn_wine \
--output-dir out \
--stages Production,Staging
Found 6 versions
Exporting version 3 stage 'Production' with run_id 24aa9cce1388474e9f26d17100724cdd to out/24aa9cce1388474e9f26d17100724cdd
Exporting version 5 stage 'Staging' with run_id 8efd80f59b7946119d8f1838515eea25 to out/8efd80f59b7946119d8f1838515eea25
Output export directory example.
+-749930c36dee49b8aeb45ee9cdfe1abb/
| +-artifacts/
| +-plot.png
| +-sklearn-model/
| | +-model.pkl
| | +-conda.yaml
| | +-MLmodel
| |
+-model.json
Sample model.json files: OSS - Databricks.
{
"mlflow": {
"registered_model": {
"name": "sklearn_wine",
"creation_timestamp": "1587517284168",
"last_updated_timestamp": "1587572072601",
"description": "hi my desc",
"latest_versions": [
{
"name": "sklearn_wine",
"version": "1",
"creation_timestamp": "1587517284216",
. . .
Import a registered model from a directory.
Source: import_model.py.
import-model --help
Options:
--input-dir TEXT Input directory that contains the exported
registered model. [required]
--model TEXT New registered model name. [required]
--experiment-name TEXT Destination experiment name - will be created
if it does not exist. [required]
--delete-model BOOLEAN If the model exists, first delete the model
and all its versions. [default: False]
--await-creation-for INTEGER Await creation for specified seconds.
--sleep-time INTEGER Sleep time for polling until
version.status==READY.
--verbose BOOLEAN Verbose. [default: False]
import-model \
--model sklearn_wine \
--experiment-name sklearn_wine_imported \
--input-dir out \
--delete-model True
Model to import:
Name: sklearn_wine
Description: my model
2 latest versions
Deleting 1 versions for model 'sklearn_wine_imported'
version=2 status=READY stage=Production run-id=f93d5e4d182e4f0aba5493a0fa8d9eb6
Importing latest versions:
Version 1:
current_stage: None:
Run to import:
run-id: 749930c36dee49b8aeb45ee9cdfe1abb
artifact_uri: file:///opt/mlflow/server/mlruns/1/749930c36dee49b8aeb45ee9cdfe1abb/artifacts
source: file:///opt/mlflow/server/mlruns/1/749930c36dee49b8aeb45ee9cdfe1abb/artifacts/sklearn-model
model_path: sklearn-model
run-id: 749930c36dee49b8aeb45ee9cdfe1abb
Importing run into experiment 'scratch' from 'out/749930c36dee49b8aeb45ee9cdfe1abb'
Imported run:
run-id: 03d0cfae60774ec99f949c42e1575532
artifact_uri: file:///opt/mlflow/server/mlruns/13/03d0cfae60774ec99f949c42e1575532/artifacts
source: file:///opt/mlflow/server/mlruns/13/03d0cfae60774ec99f949c42e1575532/artifacts/sklearn-model
Version: id=1 status=READY state=None
Waited 0.01 seconds