forked from lowRISC/opentitan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hmac.c
195 lines (166 loc) · 7.54 KB
/
hmac.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// Copyright lowRISC contributors (OpenTitan project).
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
#include "sw/device/silicon_creator/lib/drivers/hmac.h"
#include "sw/device/lib/base/abs_mmio.h"
#include "sw/device/lib/base/bitfield.h"
#include "sw/device/lib/base/macros.h"
#include "sw/device/lib/base/memory.h"
#include "sw/device/silicon_creator/lib/error.h"
#include "hmac_regs.h" // Generated.
#include "hw/top_earlgrey/sw/autogen/top_earlgrey.h"
void hmac_sha256_configure(bool big_endian_digest) {
// Clear the config, stopping the SHA engine.
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_CFG_REG_OFFSET, 0u);
// Disable and clear interrupts. INTR_STATE register is rw1c.
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_INTR_ENABLE_REG_OFFSET,
0u);
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_INTR_STATE_REG_OFFSET,
UINT32_MAX);
uint32_t reg = 0;
reg = bitfield_bit32_write(reg, HMAC_CFG_DIGEST_SWAP_BIT, big_endian_digest);
reg = bitfield_bit32_write(reg, HMAC_CFG_ENDIAN_SWAP_BIT, false);
reg = bitfield_bit32_write(reg, HMAC_CFG_SHA_EN_BIT, true);
reg = bitfield_bit32_write(reg, HMAC_CFG_HMAC_EN_BIT, false);
// configure to run SHA-2 256 with 256-bit key
reg = bitfield_field32_write(reg, HMAC_CFG_DIGEST_SIZE_FIELD,
HMAC_CFG_DIGEST_SIZE_VALUE_SHA2_256);
reg = bitfield_field32_write(reg, HMAC_CFG_KEY_LENGTH_FIELD,
HMAC_CFG_KEY_LENGTH_VALUE_KEY_256);
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_CFG_REG_OFFSET, reg);
}
inline void hmac_sha256_start(void) {
uint32_t cmd = bitfield_bit32_write(0, HMAC_CMD_HASH_START_BIT, true);
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_CMD_REG_OFFSET, cmd);
}
void hmac_sha256_update(const void *data, size_t len) {
const uint8_t *data_sent = (const uint8_t *)data;
// Individual byte writes are needed if the buffer isn't word aligned.
for (; len != 0 && (uintptr_t)data_sent & 3; --len) {
abs_mmio_write8(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_MSG_FIFO_REG_OFFSET,
*data_sent++);
}
for (; len >= sizeof(uint32_t); len -= sizeof(uint32_t)) {
uint32_t data_aligned = read_32(data_sent);
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_MSG_FIFO_REG_OFFSET,
data_aligned);
data_sent += sizeof(uint32_t);
}
// Handle non-32bit aligned bytes at the end of the buffer.
for (; len != 0; --len) {
abs_mmio_write8(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_MSG_FIFO_REG_OFFSET,
*data_sent++);
}
}
void hmac_sha256_update_words(const uint32_t *data, size_t len) {
for (size_t i = 0; i < len; i++) {
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_MSG_FIFO_REG_OFFSET,
data[i]);
}
}
inline void hmac_sha256_process(void) {
uint32_t cmd = bitfield_bit32_write(0, HMAC_CMD_HASH_PROCESS_BIT, true);
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_CMD_REG_OFFSET, cmd);
}
/**
* Wait for the `hmac_done` interrupt and then clear it.
*
* Should only be called after a `process` or `stop` command.
*/
static void wait_for_done(void) {
uint32_t reg = 0;
do {
reg = abs_mmio_read32(TOP_EARLGREY_HMAC_BASE_ADDR +
HMAC_INTR_STATE_REG_OFFSET);
} while (!bitfield_bit32_read(reg, HMAC_INTR_STATE_HMAC_DONE_BIT));
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_INTR_STATE_REG_OFFSET,
reg);
}
void hmac_sha256_final_truncated(uint32_t *digest, size_t len) {
wait_for_done();
uint32_t result, incr;
uint32_t reg =
abs_mmio_read32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_CFG_REG_OFFSET);
if (bitfield_bit32_read(reg, HMAC_CFG_DIGEST_SWAP_BIT)) {
// Big-endian output.
result = HMAC_DIGEST_0_REG_OFFSET;
incr = sizeof(uint32_t);
} else {
// Little-endian output.
// Note: we rely on 32-bit integer wraparound to cause the result register
// index to count down from 7 to 0.
result = HMAC_DIGEST_7_REG_OFFSET;
incr = (uint32_t) - sizeof(uint32_t);
}
// Ensure len is at most the digest length; this function should never be
// called with a `len` that is too big, but this helps ensure it at runtime
// just in case.
len = len <= kHmacDigestNumWords ? len : kHmacDigestNumWords;
for (uint32_t i = 0; i < len; ++i, result += incr) {
digest[i] = abs_mmio_read32(TOP_EARLGREY_HMAC_BASE_ADDR + result);
}
}
void hmac_sha256(const void *data, size_t len, hmac_digest_t *digest) {
hmac_sha256_init();
hmac_sha256_update(data, len);
hmac_sha256_process();
hmac_sha256_final(digest);
}
void hmac_sha256_save(hmac_context_t *ctx) {
// Issue the STOP command to halt the operation and compute the intermediate
// digest.
uint32_t cmd = bitfield_bit32_write(0, HMAC_CMD_HASH_STOP_BIT, true);
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_CMD_REG_OFFSET, cmd);
wait_for_done();
// Read the digest registers. Note that endianness does not matter here,
// because we will simply restore the registers in the same order as we saved
// them.
for (uint32_t i = 0; i < kHmacDigestNumWords; i++) {
ctx->digest[i] =
abs_mmio_read32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_DIGEST_0_REG_OFFSET +
i * sizeof(uint32_t));
}
// Read the message length registers.
ctx->msg_len_lower = abs_mmio_read32(TOP_EARLGREY_HMAC_BASE_ADDR +
HMAC_MSG_LENGTH_LOWER_REG_OFFSET);
ctx->msg_len_upper = abs_mmio_read32(TOP_EARLGREY_HMAC_BASE_ADDR +
HMAC_MSG_LENGTH_UPPER_REG_OFFSET);
// Momentarily clear the `sha_en` bit, which clears the digest.
uint32_t cfg =
abs_mmio_read32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_CFG_REG_OFFSET);
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_CFG_REG_OFFSET,
bitfield_bit32_write(cfg, HMAC_CFG_SHA_EN_BIT, false));
// Restore the full original configuration.
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_CFG_REG_OFFSET, cfg);
}
void hmac_sha256_restore(const hmac_context_t *ctx) {
// Clear the `sha_en` bit to ensure the message length registers are
// writeable. Leave the rest of the configuration unchanged.
uint32_t cfg =
abs_mmio_read32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_CFG_REG_OFFSET);
cfg = bitfield_bit32_write(cfg, HMAC_CFG_SHA_EN_BIT, false);
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_CFG_REG_OFFSET, cfg);
// Write the digest registers. Note that endianness does not matter here,
// because we will simply restore the registers in the same order as we saved
// them.
for (uint32_t i = 0; i < kHmacDigestNumWords; i++) {
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_DIGEST_0_REG_OFFSET +
i * sizeof(uint32_t),
ctx->digest[i]);
}
// Write the message length registers.
abs_mmio_write32(
TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_MSG_LENGTH_LOWER_REG_OFFSET,
ctx->msg_len_lower);
abs_mmio_write32(
TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_MSG_LENGTH_UPPER_REG_OFFSET,
ctx->msg_len_upper);
// Re-enable the SHA engine.
cfg = bitfield_bit32_write(cfg, HMAC_CFG_SHA_EN_BIT, true);
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_CFG_REG_OFFSET, cfg);
// Issue the CONTINUE command to restart the operation.
uint32_t cmd = bitfield_bit32_write(0, HMAC_CMD_HASH_CONTINUE_BIT, true);
abs_mmio_write32(TOP_EARLGREY_HMAC_BASE_ADDR + HMAC_CMD_REG_OFFSET, cmd);
}
extern void hmac_sha256_init(void);
extern void hmac_sha256_final(hmac_digest_t *digest);