forked from Tuyki/TT_RNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TTLayer.py
356 lines (298 loc) · 15.8 KB
/
TTLayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
__author__ = "Yinchong Yang"
__copyright__ = "Siemens AG, 2017"
__licencse__ = "MIT"
__version__ = "0.1"
"""
MIT License
Copyright (c) 2017 Siemens AG
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import numpy as np
import keras.activations
from keras import backend as K
from keras.engine.topology import Layer
from keras import activations
from keras import initializers
from keras import regularizers
from keras import constraints
def init_orthogonal_tt_cores(tt_input_shape, tt_output_shape, tt_ranks):
tt_input_shape = np.array(tt_input_shape)
tt_output_shape = np.array(tt_output_shape)
tt_ranks = np.array(tt_ranks)
cores_arr_len = np.sum(tt_input_shape * tt_output_shape *
tt_ranks[1:] * tt_ranks[:-1])
cores_arr = np.zeros(cores_arr_len)
rv = 1
d = tt_input_shape.shape[0]
rng = np.random
shapes = [None] * d
tall_shapes = [None] * d
cores = [None] * d
counter = 0
for k in range(tt_input_shape.shape[0]):
# Original implementation
# shape = [ranks[k], input_shape[k], output_shape[k], ranks[k+1]]
shapes[k] = [tt_ranks[k], tt_input_shape[k], tt_output_shape[k], tt_ranks[k + 1]]
# Original implementation
# tall_shape = (np.prod(shape[:3]), shape[3])
tall_shapes[k] = (np.prod(shapes[k][:3]), shapes[k][3])
# Original implementation
# curr_core = np.dot(rv, np.random.randn(shape[0], np.prod(shape[1:])) )
cores[k] = np.dot(rv, rng.randn(shapes[k][0], np.prod(shapes[k][1:])))
# Original implementation
# curr_core = curr_core.reshape(tall_shape)
cores[k] = cores[k].reshape(tall_shapes[k])
if k < tt_input_shape.shape[0] - 1:
# Original implementation
# curr_core, rv = np.linalg.qr(curr_core)
cores[k], rv = np.linalg.qr(cores[k])
# Original implementation
# cores_arr[cores_arr_idx:cores_arr_idx+curr_core.size] = curr_core.flatten()
# cores_arr_idx += curr_core.size
cores_arr[counter:(counter + cores[k].size)] = cores[k].flatten()
counter += cores[k].size
glarot_style = (np.prod(tt_input_shape) * np.prod(tt_ranks)) ** (1.0 / tt_input_shape.shape[0])
return (0.1 / glarot_style) * cores_arr
class TT_Layer(Layer):
"""
# References:
"Tensorizing Neural Networks"
Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, Dmitry Vetrov
In Advances in Neural Information Processing Systems 28 (NIPS-2015).
This a reimplementation of the work by:
https://github.com/Bihaqo/TensorNet/blob/master/src/python/ttlayer.py
with specific improvement and adjustments for Keras, which is rather promising framework for
Deep Learning. Applying only keras grammar, this implementation is expected to utilize
both Theano and TensorFlow(note yet tested) backends and compatible with other keras components.
# Introduction:
A Tensor-Train layer provides a replacement of a fully-connected (dense) layer. It factorizes
the latter into a train of smaller, 4D tensors and can therefore reduce the total number of
parameters in the original layer. It is expected to speed up the training and inference to a
rather large and tunable proportion, while not sacrificing much modeling quality.
This is especially the case, when the input contains redundant information, which could be e.g.
pixels in a image or feature map after convolution.
Also for feature selection / dimension reduction tasks that are too expensive to run lasso-
and ridge-regularization, TT layer could also be an option so long as one is more interested in
the mere prediction quality than identifying specific explaining features.
# Arguments:
tt_input_shape: a list of shapes, the product of which should be equal to the input dimension
tt_output_shape: a list of shapes of the same length as tt_input_shape,
the product of which should be equal to the output dimension
tt_ranks: a list of length len(tt_input_shape)+1, the first and last rank should only be 1
the rest of the arguments: please refer to dense layer in keras.
"""
def __init__(self, tt_input_shape, tt_output_shape, tt_ranks,
use_bias=True,
activation='linear',
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
debug=False,
init_seed=11111986,
**kwargs):
tt_input_shape = np.array(tt_input_shape)
tt_output_shape = np.array(tt_output_shape)
tt_ranks = np.array(tt_ranks)
self.tt_input_shape = tt_input_shape
self.tt_output_shape = tt_output_shape
self.tt_ranks = tt_ranks
self.num_dim = tt_input_shape.shape[0] # length of the train
self.use_bias = use_bias
self.activation = keras.activations.get(activation)
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.debug = debug
self.init_seed = init_seed
super(TT_Layer, self).__init__(**kwargs)
def build(self, input_shape):
num_inputs = int(np.prod(input_shape[1::]))
# Check the dimensionality
if np.prod(self.tt_input_shape) != num_inputs:
raise ValueError("The size of the input tensor (i.e. product "
"of the elements in tt_input_shape) should "
"equal to the number of input neurons %d." % num_inputs)
if self.tt_input_shape.shape[0] != self.tt_output_shape.shape[0]:
raise ValueError("The number of input and output dimensions "
"should be the same.")
if self.tt_ranks.shape[0] != self.tt_output_shape.shape[0] + 1:
raise ValueError("The number of the TT-ranks should be "
"1 + the number of the dimensions.")
if self.debug:
print 'tt_input_shape = ' + str(self.tt_input_shape)
print 'tt_output_shape = ' + str(self.tt_output_shape)
print 'tt_ranks = ' + str(self.tt_ranks)
# Initialize the weights
if self.init_seed is None:
self.init_seed = 11111986
np.random.seed(self.init_seed)
# if self.ortho_init:
# local_cores_arr = self._generate_orthogonal_tt_cores()
# else:
# total_length = np.sum(self.tt_input_shape * self.tt_output_shape *
# self.tt_ranks[1:] * self.tt_ranks[:-1])
# local_cores_arr = np.random.randn(total_length, 1) * .01
total_length = np.sum(self.tt_input_shape * self.tt_output_shape *
self.tt_ranks[1:] * self.tt_ranks[:-1])
# if self.ortho_init:
# self.kernel = self.add_weight((total_length,),
# initializer=self._generate_orthogonal_tt_cores,
# name='kernel',
# regularizer=self.kernel_regularizer,
# constraint=self.kernel_constraint)
# else:
self.kernel = self.add_weight((total_length, ),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight((np.prod(self.tt_output_shape), ),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
# Pre-calculate the indices, shapes and cores
self.inds = np.zeros(self.num_dim).astype('int32')
self.shapes = np.zeros((self.num_dim, 2)).astype('int32')
self.cores = [None] * self.num_dim
for k in range(self.num_dim - 1, -1, -1):
# This is the shape of (m_k * r_{k+1}) * (r_k * n_k)
self.shapes[k] = (self.tt_input_shape[k] * self.tt_ranks[k + 1],
self.tt_ranks[k] * self.tt_output_shape[k])
# Note that self.cores store only the pointers to the parameter vector
self.cores[k] = self.kernel[self.inds[k]:self.inds[k] + np.prod(self.shapes[k])]
if 0 < k: # < self.num_dim-1:
self.inds[k - 1] = self.inds[k] + np.prod(self.shapes[k])
if self.debug:
print 'self.shapes = ' + str(self.shapes)
# Calculate and print the compression factor
self.TT_size = total_length
self.full_size = (np.prod(self.tt_input_shape) * np.prod(self.tt_output_shape))
self.compress_factor = 1. * self.TT_size / self.full_size
print 'Compression factor = ' + str(self.TT_size) + ' / ' \
+ str(self.full_size) + ' = ' + str(self.compress_factor)
def call(self, x, mask=None):
# theano.scan doesn't seem to work when intermediate results' changes in shape -- Alexander
res = x
# core_arr_idx = 0 # oroginal implementation, removed
for k in range(self.num_dim - 1, -1, -1):
"""
These are the original codes by Alexander, which calculate the shapes ad-hoc.
Feel free to switch these codes on if one is interested in comparing performances.
At least I only observe very small differences.
# res is of size o_k+1 x ... x o_d x batch_size x i_1 x ... x i_k-1 x i_k x r_k+1
curr_shape = (self.tt_input_shape[k] * self.tt_ranks[k + 1], self.tt_ranks[k] * self.tt_output_shape[k])
curr_core = self.W[core_arr_idx:core_arr_idx+K.prod(curr_shape)].reshape(curr_shape)
res = K.dot(res.reshape((-1, curr_shape[0])), curr_core)
# res is of size o_k+1 x ... x o_d x batch_size x i_1 x ... x i_k-1 x r_k x o_k
res = K.transpose(res.reshape((-1, self.tt_output_shape[k])))
# res is of size o_k x o_k+1 x ... x o_d x batch_size x i_1 x ... x i_k-1 x r_k
core_arr_idx += K.prod(curr_shape)
"""
# New one, in order to avoid calculating the indices in every iteration
res = K.dot(K.reshape(res, (-1, self.shapes[k][0])), # of shape (-1, m_k*r_{k+1})
K.reshape(self.cores[k], self.shapes[k]) # of shape (m_k*r_{k+1}, r_k*n_k)
)
res = K.transpose(
K.reshape(res, (-1, self.tt_output_shape[k]))
)
# res is of size o_1 x ... x o_d x batch_size # by Alexander
res = K.transpose(K.reshape(res, (-1, K.shape(x)[0])))
if self.use_bias:
res = K.bias_add(res, self.bias)
if self.activation is not None:
res =self.activation(res)
return res
def get_output_shape_for(self, input_shape):
return (input_shape[0], np.prod(self.tt_output_shape))
def compute_output_shape(self, input_shape):
# assert input_shape and len(input_shape) >= 2
# assert input_shape[-1]
# output_shape = list(input_shape)
# output_shape[-1] = self.units
return (input_shape[0], np.prod(self.tt_output_shape))
def _generate_orthogonal_tt_cores(self):
cores_arr_len = np.sum(self.tt_input_shape * self.tt_output_shape *
self.tt_ranks[1:] * self.tt_ranks[:-1])
cores_arr = np.zeros(cores_arr_len)
rv = 1
d = self.tt_input_shape.shape[0]
rng = np.random
shapes = [None] * d
tall_shapes = [None] * d
cores = [None] * d
counter = 0
for k in range(self.tt_input_shape.shape[0]):
# Original implementation
# shape = [ranks[k], input_shape[k], output_shape[k], ranks[k+1]]
shapes[k] = [self.tt_ranks[k], self.tt_input_shape[k], self.tt_output_shape[k], self.tt_ranks[k + 1]]
# Original implementation
# tall_shape = (np.prod(shape[:3]), shape[3])
tall_shapes[k] = (np.prod(shapes[k][:3]), shapes[k][3])
# Original implementation
# curr_core = np.dot(rv, np.random.randn(shape[0], np.prod(shape[1:])) )
cores[k] = np.dot(rv, rng.randn(shapes[k][0], np.prod(shapes[k][1:])))
# Original implementation
# curr_core = curr_core.reshape(tall_shape)
cores[k] = cores[k].reshape(tall_shapes[k])
if k < self.tt_input_shape.shape[0] - 1:
# Original implementation
# curr_core, rv = np.linalg.qr(curr_core)
cores[k], rv = np.linalg.qr(cores[k])
# Original implementation
# cores_arr[cores_arr_idx:cores_arr_idx+curr_core.size] = curr_core.flatten()
# cores_arr_idx += curr_core.size
cores_arr[counter:(counter + cores[k].size)] = cores[k].flatten()
counter += cores[k].size
glarot_style = (np.prod(self.tt_input_shape) * np.prod(self.tt_ranks)) ** (1.0 / self.tt_input_shape.shape[0])
return (0.1 / glarot_style) * cores_arr
def get_full_W(self):
res=np.identity(np.prod(self.tt_input_shape))
for k in range(self.num_dim - 1, -1, -1):
res = np.dot(np.reshape(res, (-1, self.shapes[k][0])), # of shape (-1, m_k*r_{k+1})
np.reshape(self.cores[k], self.shapes[k]) # of shape (m_k*r_{k+1}, r_k*n_k)
)
res = np.transpose(
np.reshape(res, (-1, self.tt_output_shape[k]))
)
res = np.transpose(np.reshape(res, (-1, np.shape(res)[0])))
if self.use_bias:
res = K.bias_add(res, self.bias)
if self.activation is not None:
res =self.activation(res)
return res
# Test
# X = np.random.randn(100, 256)
# B = np.random.randn(256, 16)
# Y = np.dot(X, B)
# from keras.models import Model
# from keras.layers import Input, Dense
# input = Input((256,))
# output = TT_Layer(tt_input_shape=[4, 4, 4, 4], tt_output_shape=[2, 2, 2, 2], tt_ranks=[1, 4, 4, 4, 1],
# use_bias=True, ortho_init=False, debug=True)(input)
# model = Model(input, output)
# model.compile('sgd', 'mse')
# model.fit(x=X, y=Y, batch_size=32, epochs=100)