-
Notifications
You must be signed in to change notification settings - Fork 0
/
fftpack.h
799 lines (526 loc) · 26.4 KB
/
fftpack.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
/*
Interface for the f2c translation of fftpack as found on http://www.netlib.org/fftpack/
FFTPACK license:
http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html
Copyright (c) 2004 the University Corporation for Atmospheric
Research ("UCAR"). All rights reserved. Developed by NCAR's
Computational and Information Systems Laboratory, UCAR,
www.cisl.ucar.edu.
Redistribution and use of the Software in source and binary forms,
with or without modification, is permitted provided that the
following conditions are met:
- Neither the names of NCAR's Computational and Information Systems
Laboratory, the University Corporation for Atmospheric Research,
nor the names of its sponsors or contributors may be used to
endorse or promote products derived from this Software without
specific prior written permission.
- Redistributions of source code must retain the above copyright
notices, this list of conditions, and the disclaimer below.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the disclaimer below in the
documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
SOFTWARE.
ChangeLog:
2011/10/02: this is my first release of this file.
*/
#ifndef FFTPACK_H
#define FFTPACK_H
#ifdef __cplusplus
extern "C" {
#endif
// just define FFTPACK_DOUBLE_PRECISION if you want to build it as a double precision fft
#ifndef FFTPACK_DOUBLE_PRECISION
typedef float fftpack_real;
typedef int fftpack_int;
#else
typedef double fftpack_real;
typedef int fftpack_int;
#endif
void cffti(fftpack_int n, fftpack_real *wsave);
void cfftf(fftpack_int n, fftpack_real *c, fftpack_real *wsave);
void cfftb(fftpack_int n, fftpack_real *c, fftpack_real *wsave);
void rffti(fftpack_int n, fftpack_real *wsave);
void rfftf(fftpack_int n, fftpack_real *r, fftpack_real *wsave);
void rfftb(fftpack_int n, fftpack_real *r, fftpack_real *wsave);
void cosqi(fftpack_int n, fftpack_real *wsave);
void cosqf(fftpack_int n, fftpack_real *x, fftpack_real *wsave);
void cosqb(fftpack_int n, fftpack_real *x, fftpack_real *wsave);
void costi(fftpack_int n, fftpack_real *wsave);
void cost(fftpack_int n, fftpack_real *x, fftpack_real *wsave);
void sinqi(fftpack_int n, fftpack_real *wsave);
void sinqb(fftpack_int n, fftpack_real *x, fftpack_real *wsave);
void sinqf(fftpack_int n, fftpack_real *x, fftpack_real *wsave);
void sinti(fftpack_int n, fftpack_real *wsave);
void sint(fftpack_int n, fftpack_real *x, fftpack_real *wsave);
#ifdef __cplusplus
}
#endif
#endif /* FFTPACK_H */
/*
FFTPACK
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
version 4 april 1985
a package of fortran subprograms for the fast fourier
transform of periodic and other symmetric sequences
by
paul n swarztrauber
national center for atmospheric research boulder,colorado 80307
which is sponsored by the national science foundation
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
this package consists of programs which perform fast fourier
transforms for both complex and real periodic sequences and
certain other symmetric sequences that are listed below.
1. rffti initialize rfftf and rfftb
2. rfftf forward transform of a real periodic sequence
3. rfftb backward transform of a real coefficient array
4. ezffti initialize ezfftf and ezfftb
5. ezfftf a simplified real periodic forward transform
6. ezfftb a simplified real periodic backward transform
7. sinti initialize sint
8. sint sine transform of a real odd sequence
9. costi initialize cost
10. cost cosine transform of a real even sequence
11. sinqi initialize sinqf and sinqb
12. sinqf forward sine transform with odd wave numbers
13. sinqb unnormalized inverse of sinqf
14. cosqi initialize cosqf and cosqb
15. cosqf forward cosine transform with odd wave numbers
16. cosqb unnormalized inverse of cosqf
17. cffti initialize cfftf and cfftb
18. cfftf forward transform of a complex periodic sequence
19. cfftb unnormalized inverse of cfftf
******************************************************************
subroutine rffti(n,wsave)
****************************************************************
subroutine rffti initializes the array wsave which is used in
both rfftf and rfftb. the prime factorization of n together with
a tabulation of the trigonometric functions are computed and
stored in wsave.
input parameter
n the length of the sequence to be transformed.
output parameter
wsave a work array which must be dimensioned at least 2*n+15.
the same work array can be used for both rfftf and rfftb
as long as n remains unchanged. different wsave arrays
are required for different values of n. the contents of
wsave must not be changed between calls of rfftf or rfftb.
******************************************************************
subroutine rfftf(n,r,wsave)
******************************************************************
subroutine rfftf computes the fourier coefficients of a real
perodic sequence (fourier analysis). the transform is defined
below at output parameter r.
input parameters
n the length of the array r to be transformed. the method
is most efficient when n is a product of small primes.
n may change so long as different work arrays are provided
r a real array of length n which contains the sequence
to be transformed
wsave a work array which must be dimensioned at least 2*n+15.
in the program that calls rfftf. the wsave array must be
initialized by calling subroutine rffti(n,wsave) and a
different wsave array must be used for each different
value of n. this initialization does not have to be
repeated so long as n remains unchanged thus subsequent
transforms can be obtained faster than the first.
the same wsave array can be used by rfftf and rfftb.
output parameters
r r(1) = the sum from i=1 to i=n of r(i)
if n is even set l =n/2 , if n is odd set l = (n+1)/2
then for k = 2,...,l
r(2*k-2) = the sum from i = 1 to i = n of
r(i)*cos((k-1)*(i-1)*2*pi/n)
r(2*k-1) = the sum from i = 1 to i = n of
-r(i)*sin((k-1)*(i-1)*2*pi/n)
if n is even
r(n) = the sum from i = 1 to i = n of
(-1)**(i-1)*r(i)
***** note
this transform is unnormalized since a call of rfftf
followed by a call of rfftb will multiply the input
sequence by n.
wsave contains results which must not be destroyed between
calls of rfftf or rfftb.
******************************************************************
subroutine rfftb(n,r,wsave)
******************************************************************
subroutine rfftb computes the real perodic sequence from its
fourier coefficients (fourier synthesis). the transform is defined
below at output parameter r.
input parameters
n the length of the array r to be transformed. the method
is most efficient when n is a product of small primes.
n may change so long as different work arrays are provided
r a real array of length n which contains the sequence
to be transformed
wsave a work array which must be dimensioned at least 2*n+15.
in the program that calls rfftb. the wsave array must be
initialized by calling subroutine rffti(n,wsave) and a
different wsave array must be used for each different
value of n. this initialization does not have to be
repeated so long as n remains unchanged thus subsequent
transforms can be obtained faster than the first.
the same wsave array can be used by rfftf and rfftb.
output parameters
r for n even and for i = 1,...,n
r(i) = r(1)+(-1)**(i-1)*r(n)
plus the sum from k=2 to k=n/2 of
2.*r(2*k-2)*cos((k-1)*(i-1)*2*pi/n)
-2.*r(2*k-1)*sin((k-1)*(i-1)*2*pi/n)
for n odd and for i = 1,...,n
r(i) = r(1) plus the sum from k=2 to k=(n+1)/2 of
2.*r(2*k-2)*cos((k-1)*(i-1)*2*pi/n)
-2.*r(2*k-1)*sin((k-1)*(i-1)*2*pi/n)
***** note
this transform is unnormalized since a call of rfftf
followed by a call of rfftb will multiply the input
sequence by n.
wsave contains results which must not be destroyed between
calls of rfftb or rfftf.
******************************************************************
subroutine sinti(n,wsave)
******************************************************************
subroutine sinti initializes the array wsave which is used in
subroutine sint. the prime factorization of n together with
a tabulation of the trigonometric functions are computed and
stored in wsave.
input parameter
n the length of the sequence to be transformed. the method
is most efficient when n+1 is a product of small primes.
output parameter
wsave a work array with at least int(2.5*n+15) locations.
different wsave arrays are required for different values
of n. the contents of wsave must not be changed between
calls of sint.
******************************************************************
subroutine sint(n,x,wsave)
******************************************************************
subroutine sint computes the discrete fourier sine transform
of an odd sequence x(i). the transform is defined below at
output parameter x.
sint is the unnormalized inverse of itself since a call of sint
followed by another call of sint will multiply the input sequence
x by 2*(n+1).
the array wsave which is used by subroutine sint must be
initialized by calling subroutine sinti(n,wsave).
input parameters
n the length of the sequence to be transformed. the method
is most efficient when n+1 is the product of small primes.
x an array which contains the sequence to be transformed
wsave a work array with dimension at least int(2.5*n+15)
in the program that calls sint. the wsave array must be
initialized by calling subroutine sinti(n,wsave) and a
different wsave array must be used for each different
value of n. this initialization does not have to be
repeated so long as n remains unchanged thus subsequent
transforms can be obtained faster than the first.
output parameters
x for i=1,...,n
x(i)= the sum from k=1 to k=n
2*x(k)*sin(k*i*pi/(n+1))
a call of sint followed by another call of
sint will multiply the sequence x by 2*(n+1).
hence sint is the unnormalized inverse
of itself.
wsave contains initialization calculations which must not be
destroyed between calls of sint.
******************************************************************
subroutine costi(n,wsave)
******************************************************************
subroutine costi initializes the array wsave which is used in
subroutine cost. the prime factorization of n together with
a tabulation of the trigonometric functions are computed and
stored in wsave.
input parameter
n the length of the sequence to be transformed. the method
is most efficient when n-1 is a product of small primes.
output parameter
wsave a work array which must be dimensioned at least 3*n+15.
different wsave arrays are required for different values
of n. the contents of wsave must not be changed between
calls of cost.
******************************************************************
subroutine cost(n,x,wsave)
******************************************************************
subroutine cost computes the discrete fourier cosine transform
of an even sequence x(i). the transform is defined below at output
parameter x.
cost is the unnormalized inverse of itself since a call of cost
followed by another call of cost will multiply the input sequence
x by 2*(n-1). the transform is defined below at output parameter x
the array wsave which is used by subroutine cost must be
initialized by calling subroutine costi(n,wsave).
input parameters
n the length of the sequence x. n must be greater than 1.
the method is most efficient when n-1 is a product of
small primes.
x an array which contains the sequence to be transformed
wsave a work array which must be dimensioned at least 3*n+15
in the program that calls cost. the wsave array must be
initialized by calling subroutine costi(n,wsave) and a
different wsave array must be used for each different
value of n. this initialization does not have to be
repeated so long as n remains unchanged thus subsequent
transforms can be obtained faster than the first.
output parameters
x for i=1,...,n
x(i) = x(1)+(-1)**(i-1)*x(n)
+ the sum from k=2 to k=n-1
2*x(k)*cos((k-1)*(i-1)*pi/(n-1))
a call of cost followed by another call of
cost will multiply the sequence x by 2*(n-1)
hence cost is the unnormalized inverse
of itself.
wsave contains initialization calculations which must not be
destroyed between calls of cost.
******************************************************************
subroutine sinqi(n,wsave)
******************************************************************
subroutine sinqi initializes the array wsave which is used in
both sinqf and sinqb. the prime factorization of n together with
a tabulation of the trigonometric functions are computed and
stored in wsave.
input parameter
n the length of the sequence to be transformed. the method
is most efficient when n is a product of small primes.
output parameter
wsave a work array which must be dimensioned at least 3*n+15.
the same work array can be used for both sinqf and sinqb
as long as n remains unchanged. different wsave arrays
are required for different values of n. the contents of
wsave must not be changed between calls of sinqf or sinqb.
******************************************************************
subroutine sinqf(n,x,wsave)
******************************************************************
subroutine sinqf computes the fast fourier transform of quarter
wave data. that is , sinqf computes the coefficients in a sine
series representation with only odd wave numbers. the transform
is defined below at output parameter x.
sinqb is the unnormalized inverse of sinqf since a call of sinqf
followed by a call of sinqb will multiply the input sequence x
by 4*n.
the array wsave which is used by subroutine sinqf must be
initialized by calling subroutine sinqi(n,wsave).
input parameters
n the length of the array x to be transformed. the method
is most efficient when n is a product of small primes.
x an array which contains the sequence to be transformed
wsave a work array which must be dimensioned at least 3*n+15.
in the program that calls sinqf. the wsave array must be
initialized by calling subroutine sinqi(n,wsave) and a
different wsave array must be used for each different
value of n. this initialization does not have to be
repeated so long as n remains unchanged thus subsequent
transforms can be obtained faster than the first.
output parameters
x for i=1,...,n
x(i) = (-1)**(i-1)*x(n)
+ the sum from k=1 to k=n-1 of
2*x(k)*sin((2*i-1)*k*pi/(2*n))
a call of sinqf followed by a call of
sinqb will multiply the sequence x by 4*n.
therefore sinqb is the unnormalized inverse
of sinqf.
wsave contains initialization calculations which must not
be destroyed between calls of sinqf or sinqb.
******************************************************************
subroutine sinqb(n,x,wsave)
******************************************************************
subroutine sinqb computes the fast fourier transform of quarter
wave data. that is , sinqb computes a sequence from its
representation in terms of a sine series with odd wave numbers.
the transform is defined below at output parameter x.
sinqf is the unnormalized inverse of sinqb since a call of sinqb
followed by a call of sinqf will multiply the input sequence x
by 4*n.
the array wsave which is used by subroutine sinqb must be
initialized by calling subroutine sinqi(n,wsave).
input parameters
n the length of the array x to be transformed. the method
is most efficient when n is a product of small primes.
x an array which contains the sequence to be transformed
wsave a work array which must be dimensioned at least 3*n+15.
in the program that calls sinqb. the wsave array must be
initialized by calling subroutine sinqi(n,wsave) and a
different wsave array must be used for each different
value of n. this initialization does not have to be
repeated so long as n remains unchanged thus subsequent
transforms can be obtained faster than the first.
output parameters
x for i=1,...,n
x(i)= the sum from k=1 to k=n of
4*x(k)*sin((2k-1)*i*pi/(2*n))
a call of sinqb followed by a call of
sinqf will multiply the sequence x by 4*n.
therefore sinqf is the unnormalized inverse
of sinqb.
wsave contains initialization calculations which must not
be destroyed between calls of sinqb or sinqf.
******************************************************************
subroutine cosqi(n,wsave)
******************************************************************
subroutine cosqi initializes the array wsave which is used in
both cosqf and cosqb. the prime factorization of n together with
a tabulation of the trigonometric functions are computed and
stored in wsave.
input parameter
n the length of the array to be transformed. the method
is most efficient when n is a product of small primes.
output parameter
wsave a work array which must be dimensioned at least 3*n+15.
the same work array can be used for both cosqf and cosqb
as long as n remains unchanged. different wsave arrays
are required for different values of n. the contents of
wsave must not be changed between calls of cosqf or cosqb.
******************************************************************
subroutine cosqf(n,x,wsave)
******************************************************************
subroutine cosqf computes the fast fourier transform of quarter
wave data. that is , cosqf computes the coefficients in a cosine
series representation with only odd wave numbers. the transform
is defined below at output parameter x
cosqf is the unnormalized inverse of cosqb since a call of cosqf
followed by a call of cosqb will multiply the input sequence x
by 4*n.
the array wsave which is used by subroutine cosqf must be
initialized by calling subroutine cosqi(n,wsave).
input parameters
n the length of the array x to be transformed. the method
is most efficient when n is a product of small primes.
x an array which contains the sequence to be transformed
wsave a work array which must be dimensioned at least 3*n+15
in the program that calls cosqf. the wsave array must be
initialized by calling subroutine cosqi(n,wsave) and a
different wsave array must be used for each different
value of n. this initialization does not have to be
repeated so long as n remains unchanged thus subsequent
transforms can be obtained faster than the first.
output parameters
x for i=1,...,n
x(i) = x(1) plus the sum from k=2 to k=n of
2*x(k)*cos((2*i-1)*(k-1)*pi/(2*n))
a call of cosqf followed by a call of
cosqb will multiply the sequence x by 4*n.
therefore cosqb is the unnormalized inverse
of cosqf.
wsave contains initialization calculations which must not
be destroyed between calls of cosqf or cosqb.
******************************************************************
subroutine cosqb(n,x,wsave)
******************************************************************
subroutine cosqb computes the fast fourier transform of quarter
wave data. that is , cosqb computes a sequence from its
representation in terms of a cosine series with odd wave numbers.
the transform is defined below at output parameter x.
cosqb is the unnormalized inverse of cosqf since a call of cosqb
followed by a call of cosqf will multiply the input sequence x
by 4*n.
the array wsave which is used by subroutine cosqb must be
initialized by calling subroutine cosqi(n,wsave).
input parameters
n the length of the array x to be transformed. the method
is most efficient when n is a product of small primes.
x an array which contains the sequence to be transformed
wsave a work array that must be dimensioned at least 3*n+15
in the program that calls cosqb. the wsave array must be
initialized by calling subroutine cosqi(n,wsave) and a
different wsave array must be used for each different
value of n. this initialization does not have to be
repeated so long as n remains unchanged thus subsequent
transforms can be obtained faster than the first.
output parameters
x for i=1,...,n
x(i)= the sum from k=1 to k=n of
4*x(k)*cos((2*k-1)*(i-1)*pi/(2*n))
a call of cosqb followed by a call of
cosqf will multiply the sequence x by 4*n.
therefore cosqf is the unnormalized inverse
of cosqb.
wsave contains initialization calculations which must not
be destroyed between calls of cosqb or cosqf.
******************************************************************
subroutine cffti(n,wsave)
******************************************************************
subroutine cffti initializes the array wsave which is used in
both cfftf and cfftb. the prime factorization of n together with
a tabulation of the trigonometric functions are computed and
stored in wsave.
input parameter
n the length of the sequence to be transformed
output parameter
wsave a work array which must be dimensioned at least 4*n+15
the same work array can be used for both cfftf and cfftb
as long as n remains unchanged. different wsave arrays
are required for different values of n. the contents of
wsave must not be changed between calls of cfftf or cfftb.
******************************************************************
subroutine cfftf(n,c,wsave)
******************************************************************
subroutine cfftf computes the forward complex discrete fourier
transform (the fourier analysis). equivalently , cfftf computes
the fourier coefficients of a complex periodic sequence.
the transform is defined below at output parameter c.
the transform is not normalized. to obtain a normalized transform
the output must be divided by n. otherwise a call of cfftf
followed by a call of cfftb will multiply the sequence by n.
the array wsave which is used by subroutine cfftf must be
initialized by calling subroutine cffti(n,wsave).
input parameters
n the length of the complex sequence c. the method is
more efficient when n is the product of small primes. n
c a complex array of length n which contains the sequence
wsave a real work array which must be dimensioned at least 4n+15
in the program that calls cfftf. the wsave array must be
initialized by calling subroutine cffti(n,wsave) and a
different wsave array must be used for each different
value of n. this initialization does not have to be
repeated so long as n remains unchanged thus subsequent
transforms can be obtained faster than the first.
the same wsave array can be used by cfftf and cfftb.
output parameters
c for j=1,...,n
c(j)=the sum from k=1,...,n of
c(k)*exp(-i*(j-1)*(k-1)*2*pi/n)
where i=sqrt(-1)
wsave contains initialization calculations which must not be
destroyed between calls of subroutine cfftf or cfftb
******************************************************************
subroutine cfftb(n,c,wsave)
******************************************************************
subroutine cfftb computes the backward complex discrete fourier
transform (the fourier synthesis). equivalently , cfftb computes
a complex periodic sequence from its fourier coefficients.
the transform is defined below at output parameter c.
a call of cfftf followed by a call of cfftb will multiply the
sequence by n.
the array wsave which is used by subroutine cfftb must be
initialized by calling subroutine cffti(n,wsave).
input parameters
n the length of the complex sequence c. the method is
more efficient when n is the product of small primes.
c a complex array of length n which contains the sequence
wsave a real work array which must be dimensioned at least 4n+15
in the program that calls cfftb. the wsave array must be
initialized by calling subroutine cffti(n,wsave) and a
different wsave array must be used for each different
value of n. this initialization does not have to be
repeated so long as n remains unchanged thus subsequent
transforms can be obtained faster than the first.
the same wsave array can be used by cfftf and cfftb.
output parameters
c for j=1,...,n
c(j)=the sum from k=1,...,n of
c(k)*exp(i*(j-1)*(k-1)*2*pi/n)
where i=sqrt(-1)
wsave contains initialization calculations which must not be
destroyed between calls of subroutine cfftf or cfftb
*/