diff --git a/ea2724-ai_hw/hw7.typ b/ea2724-ai_hw/hw7.typ index fb0effe..cb62d72 100644 --- a/ea2724-ai_hw/hw7.typ +++ b/ea2724-ai_hw/hw7.typ @@ -22,8 +22,13 @@ Due 2024.05.12 #table( columns: (auto, auto, auto), - fill: (x, y) => if x == 0 or y == 0 { - blue.lighten(80%) + fill: (x, y) => { + if (x == 0 or y == 0) and not (x == 0 and y == 0) { + blue.lighten(80%) + } + if (x == 0 and y == 0) { + blue.lighten(60%) + } }, stroke: blue, align: center, @@ -102,8 +107,13 @@ b. 如果你知道雅典的出租车 $10$ 辆中有 $9$ 辆是绿色的呢? #table( columns: (auto, auto, auto), - fill: (x, y) => if x == 0 or y == 0 { - blue.lighten(80%) + fill: (x, y) => { + if (x == 0 or y == 0) and not (x == 0 and y == 0) { + blue.lighten(80%) + } + if (x == 0 and y == 0) { + blue.lighten(60%) + } }, stroke: blue, align: center, @@ -186,18 +196,26 @@ c. 题目中的条件独立性假设合理吗?请讨论。 [ #raw-render(```dot digraph { + layout=neato; rankdir=TD; node [shape=circle]; - F_1, F_2, M_1, M_2, N; + F_1 [pos="0,0!"]; + F_2 [pos="1.5,0!"]; + M_1 [pos="0,2!"]; + M_2 [pos="1.5,2!"]; + N [pos="0.5,1"]; M_1 -> F_1; M_1 -> M_2; M_1 -> N; N -> F_1; N -> F_2; M_2 -> N; M_2 -> F_2; } ```) - ],[ + ], + [ (i) - ],[ + ], + [ (ii) - ],[ + ], + [ (iii) ], ) @@ -206,17 +224,247 @@ c. 题目中的条件独立性假设合理吗?请讨论。 a. 这三种网络结构哪些是对上述信息的正确(但不一定高效)表示? #ans[ + (ii), (iii) 正确; + 考虑到 $ P(N mid(|)M_1)!=P(N|M_1,F_1) $ 所以 $F_1$ 与 $M$ 应该同时连接到 $N$, (i) 不正确. ] b.哪一种网络结构是最好的?请解释。 +#ans[ + (ii), 关系少, 更紧致. +] + c.当 $N in {1,2,3}, quad M_1 in {0,1,2,3,4}$时,请写出 $P(M_1 mid(|) N)$ 的条件概率表。概率分布表里的每个条目都应该表达为参数$e$和/或$f$的一个函数。 +#ans[ + + $ + P(M_1 mid(|) N) &= P(M_1 mid(|) N, F_1) P(F_1 mid(|) N) + P(M_1 mid(N), not F_1) P(not F_1 mid(|) N)\ + &= P(M_1 mid(|) N, F_1) P(F_1) + P(M_1 mid(N), not F_1) P(not F_1)\ + $ + + #table( + columns: (auto, auto, auto, auto, auto, auto), + align: center, + fill: (x, y) => { + if (x == 0 or y == 0) and not (x == 0 and y == 0) { + blue.lighten(80%) + } + if (x == 0 and y == 0) { + blue.lighten(90%) + } + }, + stroke: blue, + [ + $P(M_1 mid(|) N)$ + ], + [ + $M_1 = 0$ + ], + [ + $M_1 = 1$ + ], + [ + $M_1 = 2$ + ], + [ + $M_1 = 3$ + ], + [ + $M_1 = 4$ + ], + [ + $N = 1$ + ], + [ + $f+e(1-f)$ + ], + [ + $(1-2e)(1-f)$ + ], + [ + $e(1-f)$ + ], + [ + #set text(fill: red) + $0$ + ], + [ + $0$ + ], + [ + $N = 2$ + ], + [ + $f$ + ], + [ + #set text(fill: green) + $e(1-f)$ + ], + [ + $(1-2e)(1-f)$ + ], + [ + #set text(fill: green) + $e(1-f)$ + ], + [ + $0$ + ], + [ + $N = 3$ + ], + [ + $f$ + ], + [ + #set text(fill: red) + $0$ + ], + [ + $e(1-f)$ + ], + [ + $(1-2e)(1-f)$ + ], + [ + $e(1-f)$ + ], + ) +] + d.假设 $M_1 = 1, quad M_2 = 3$。如果我们假设 $N$ 取值上没有先验概率约束,可能的恒星数目是多少? +#ans[ + + #table( + columns: (auto, auto, auto, auto, auto, auto, auto), + align: center, + fill: (x, y) => { + if (x == 0 or y == 0) and not (x == 0 and y == 0) { + blue.lighten(80%) + } + if (x == 0 and y == 0) { + blue.lighten(90%) + } + }, + stroke: blue, + [ + $P(M_1 mid(|) N)$ + ], + [ + $M_1 = 0$ + ], + [ + $M_1 = 1$ + ], + [ + $M_1 = 2$ + ], + [ + $M_1 = 3$ + ], + [ + $M_1 = 4$ + ], + [ + $dots.c$ + ], + [ + $N = 4$ + ], + [ + $f$ + ], + [ + #set text(fill: green) + $f$ + ], + [ + $0$ + ], + [ + #set text(fill: green) + $e(1-f)$ + ], + [ + $(1-2e)(1-f)$ + ], + [ + $dots.c$ + ], + [ + $N=5$ + ], + [ + $f$ + ], + [ + $f$ + ], + [ + $f$ + ], + [ + #set text(fill: red) + $0$ + ], + [ + $e(1-f)$ + ], + [ + $dots.c$ + ], + ) + #let color_r(x) = text(fill: red, $#x$) + $ + P(M = 3 mid(|) N = 0) = 0 &quad& => &quad& N!=0\ + P(M = 3 mid(|) N = 1) = 0 &quad& => &quad& N!=1\ + P(M = 1 mid(|) N = 3) = 0 &quad& => &quad& N!=3\ + P(M = 1 mid(|) N = 5) = 0 &quad& => &quad& N!=5\ + $ + + $P(M = i mid(|) N = n) > 0 quad forall i = 1,3; n = 2,4$ 已经在表中标记出来了. (考虑到 $f approx 0$ 时=, 我们近似地认为每行加起来为 $1$. ) + + 考虑 $n >= 6$ 时, $P(M = 1 mid(|) N = n) = P(M = 3 mid(|) N = n) = f > 0$. + + 因此可能的 $n$ 的取值为 $2,4$ 或 $n>=6$ +] + e.在这些观测结果下,最可能的恒星数目是多少?解释如何计算这个数目,或者,如果不可能计算,请解释还需要什么附加信息以及它将如何影响结果。 +#ans[ + 缺少 $N$ 的先验概率分布, 无法计算最可能的恒星数目. + + 考虑我们提供一个分布: $P(N=n) = p_n quad forall n = 2,4,6,7, dots$ + + $ + &P(N=2, M_1 = 1, M_2 = 3) &=& p_2 e^2(1-f)^2\ + &P(N=4, M_1 = 1, M_2 = 3) &=& p_4 e f(1-f)^2\ + (n>=6) quad &P(N=n, M_1 = 1, M_2 = 3) &=& p_n f^2\ + $ + + 计算出并比较大小即可, 取 $n="argmax"_n P(N=n, M_1 = 1, M_2 = 3)$. +] + === Question 14.13 -考虑 图14.22(ii) 的网络,假设两个望远镜完全相同。$N in {1,2,3}$,$M_1, M_2 in {0,1,2,3,4}$,CPT表和习题14.12所描述的一样。使用枚举算法(图14.9)计算概率分布。 \ No newline at end of file +考虑 图14.22(ii) 的网络,假设两个望远镜完全相同。$N in {1,2,3}$,$M_1, M_2 in {0,1,2,3,4}$,CPT表和习题14.12所描述的一样。使用枚举算法(图14.9)计算概率分布 $P(N mid(|) M_1=1,M_2 = 2)$。 + +#ans[ + $ + cal(P)(N mid(|) M_1=2, M_2=2) &= alpha sum_(f_1,f_2) cal(P)(f_1, f_2, N, M_1=2,M_2=2)\ + &=alpha sum_(f_1,f_2) P(f_1) P(f_2) cal(P)(N) P(M_1=2,M_2=2) + $ + + 考虑到 $M_1=M_2=2$, 只有 $F_1=F_2="false"$ 时才能满足, 因此: + + $ + cal(P)(N mid(|) M_1=2, M_2=2) &= alpha (1-f)^2 angle.l p_1, p_2, p_3 angle.r angle.l e, (1-2e), e angle.r angle.l e, ( + 1-2e + ), e angle.r\ + &= alpha^' angle.l p_1 e^2, p_2(1-2e)^2, p_3 e^2 angle.r + $ +] \ No newline at end of file