From 9f2741a2b33ccb7492146eb27f7b1f9dd7d4e81b Mon Sep 17 00:00:00 2001 From: TianKai Ma Date: Wed, 17 Apr 2024 17:21:43 +0800 Subject: [PATCH] 24_SP_TA: draft1 --- 2bc0c8-2024_spring_TA/main.typ | 116 +++++++++++++++++++++++++++++++++ 1 file changed, 116 insertions(+) diff --git a/2bc0c8-2024_spring_TA/main.typ b/2bc0c8-2024_spring_TA/main.typ index b2eae24..6bdc47a 100644 --- a/2bc0c8-2024_spring_TA/main.typ +++ b/2bc0c8-2024_spring_TA/main.typ @@ -735,4 +735,120 @@ $ &=R^2/2 tan theta |_0^(arctan R)\ // &=1/2 R^2 tan(arctan R)\ &=1/2 R^3 +$ + +#pagebreak() +=== 2 +- (2) + +$ +&quad integral.double_D sqrt(x^2/a^2+y^2/b^2) dif x dif y\ +(x=a dot r sin theta, y=b dot r cos theta) & = integral.double_D r dot a b dot r dif r dif theta\ +&= a b integral_0^(arctan(b\/a)) dif theta integral_0^2 r^2 dif r\ +&= 8/3 a b dot arctan(b/a) +$ + +- (5) + +$ +(x y = u, x^2/y=v) => (x=root(3,u v), y = root(3,u^2/v))\ + +(diff (x,y))/(diff (u,v)) = abs(mat( + 1/3 u^(-2/3) v^(1/3), 1/3 u^(1/3) v^(-2/3); + 2/3 u^(-1/3) v^(-1/3), -1/3 u^(2/3) v^(-4/3) +)) = abs( -1/9v^(-1) - 2/9 v^(-1)) = 1/3 v^(-1) quad u,v > 0\ +$ + +$ +integral.double_D x y dif x dif y +&= 1/3integral.double_D u^1 v^(-1) dif u dif v\ +&= 1/3integral_1^2dif u integral_1^2 u/v dif v\ +&= 1/3(integral_1^2 u dif u)(integral_1^2 (dif v)/v)\ +&= 1/2 ln 2 +$ + +- (8) + +$ +(x+y = u, y=v) => (x=u-v,y=v)\ +(diff (x,y))/(diff (u,v)) = abs(mat(1,-1;0, 1)) = 1 +$ + +$ +integral.double_D sin y/(x+y) dif x dif y &=integral_0^1 dif t integral_0^t sin y/t dif y\ +&=integral_0^1 dif t dot (t cos t/t - t cos 0/t)\ +&=integral_0^1 (-t cos 1 + t) dif t\ +&=1/2 - 1/2 cos 1\ +&=sin^2 1/2 +$ + +#pagebreak() +=== 3 + +- (2) + + 考虑变换 $u=x-y,v=y, (diff (x,y))/(diff (u,v))=1$ + + 因此在 $x-y$ 下的面积与 $u-v$下相等, 均为 $pi a^2$ + +- (3) + + 考虑变换 $u=x+y,v=y/x quad => quad x = u/(1+v), y=(u v)/(1+v)$ + + $ + (diff (x,y))/(diff (u,v)) = u/(1+v)^2 + $ + + $ + integral.double_D dif x dif y &= integral.double_D u/(1+v)^2 dif u dif v\ + &=(integral_a^b u dif u)(integral_k^m (dif v)/(1+v)^2)\ + &=(b^2-a^2)(arctan(m) - arctan(k)) + $ + +// #pagebreak() +=== 4 +证明:$integral.double_(x^2+y^2<=1) e^(x^2+y^2) dif x dif y<= (integral_(-sqrt(pi)/2)^(sqrt(pi)/2)e^(x^2)dif x)^2$ + +$ +integral.double_(x^2+y^2<=1) e^(x^2+y^2) dif x dif y +&= integral_0^(2pi) dif theta integral_0^1 r e^r dif r\ +&= 2pi integral_0^1 r e^(r^2) dif r\ +&= 2pi [1/2 e^(r^2)]_0^1\ +&= pi(e-1) +$ + +#strike[右侧没想明白, 暴力也能做就是了:] + +$ +(integral_(-sqrt(pi)/2)^(sqrt(pi)/2)e^(x^2)dif x)^2 +&= (2 integral_0^(sqrt(pi)/2)e^(x^2)dif x)^2\ +&>= (2 integral_0^(sqrt(pi)/2) (1+ x^2 + x^4/2)dif x)^2\ +&= (pi^(1/2) + 1/12 pi^(3/2)+1/160 pi^(5/2))^2\ +&>= pi + 1/6 pi^2 + 1/144 pi^3 + 1/80 pi^3 + 1/960 pi^4 +$ + +#strike[这不可能是正常做法, 这样放缩至少需要把 $pi > 22/7$ 代入, 然后至少计算到小数点后三位.] + +#strike[但考场做不出来用这种骗分也说不定呢] + +#pagebreak() +=== 6 + +考虑把关于原点对称的两个区域合并计算, 即我们现在在右半平面上计算, 左侧的区域对称到 $(-x,-y)$ 计算: +$ +& quad integral.double_(abs(x)+abs(y)<=1)e^(f(x,y)) dif x dif y\ +& = integral.double_(abs(x)+abs(y)<=1, x>0)e^(f(x,y))+e^(f(-x,-y)) dif x dif y\ +& = integral.double_(abs(x)+abs(y)<=1, x>0)e^(f(x,y))+e^(-f(x,y)) dif x dif y\ +& >= 2integral.double_(abs(x)+abs(y)<=1, x>0) dif x dif y\ +& = 2 quad qed +$ + +=== 7 + +考虑变换 $s=x+y, t=x-y, (diff (x,y))/(diff (s,t)) = 1/2$ + +$ +integral.double_D f(x-y) dif x dif y &= integral.double_(D^') 1/2 f(t) dif s dif t\ +&=1/2 integral_(-A)^A dif t integral_(abs(t) - A)^(A-abs(t)) f(t) dif s\ +&=integral_(-A)^A (A-abs(t)) f(t) dif t quad qed $ \ No newline at end of file