From 7267518cff84feb39f21f3cefed7f8b67d9fd994 Mon Sep 17 00:00:00 2001 From: TianKai Ma Date: Fri, 19 Apr 2024 12:33:18 +0800 Subject: [PATCH] 24_SP_TA: fix --- 2bc0c8-2024_spring_TA/main.typ | 71 +++++++++++++++++++--------------- 1 file changed, 40 insertions(+), 31 deletions(-) diff --git a/2bc0c8-2024_spring_TA/main.typ b/2bc0c8-2024_spring_TA/main.typ index b6f88c0..547dbee 100644 --- a/2bc0c8-2024_spring_TA/main.typ +++ b/2bc0c8-2024_spring_TA/main.typ @@ -155,9 +155,9 @@ $ 可以解出 $ -P_0=(pi / 6,pi / 6,pi / 6)\ +P_0=(pi / 6,pi / 6,pi / 6) quad P_1=(pi / 2,0,0)\ -P_2=(0,pi / 2,0)\ +P_2=(0,pi / 2,0) quad P_3=(0,0,pi / 2)\ $ @@ -165,6 +165,8 @@ $ 极大值极小值的判断不能直接从拉格朗日乘子法中得到, 应该通过如下方法判断: +- *降为二元函数* + $ u(x,y)=u(x,y,z)=u(x,y,pi / 2-x-y)=sin x sin y cos(x+y)\ $ @@ -174,7 +176,7 @@ $ #image("./imgs/6.png", width: 50%) #box[ - 更一般的, 我们可以做如下处理: + 可以做如下处理: $ u&=sin x sin y sin z \ @@ -208,6 +210,12 @@ $ 下图是 $u(x,y,z)=sin x sin y sin z $ 的热力图,通过颜色来反应无法画出的另一维度的信息. #image("imgs/5.png", width: 50%) +- *紧集最值定理*: + - 考虑 $f: D -> RR, D subset RR^d$ $D$ 在 $RR^d$ 上 compact, $f$ 在 $D$ 上连续, 则 $f$ 在 $D$ 上有最大值和最小值. + - 讨论在 $diff D$ 上 $f$ 的取值, 在这个问题中 $f|_(diff D) eq.triple 0$ + - 在 $D^o$ 中, 最值必定在驻点中取得 $=> f(D^o)= [0,1\/8]$ + - 那么 $f(D) = [0, 1\/8] quad forall x in D$, 在 $P_0$ 的一个局部$U(P_0) subset D$ 内, $forall x in P_0, f(x) <= 1\/8 = f(P_0)$, 因此是极大值 + #pagebreak() === 10(4) @@ -391,10 +399,10 @@ $ (diff z)/(diff x) &= cos x -cos(x+y) = 0 \ (diff z)/(diff y) &= cos y -cos(x+y) = 0 \ ) \ -&P_1(0,0) quad P_2(2pi,0) quad P_3(0,2pi) quad P_4(pi / 3, pi / 3) +&P_1(0,0) quad P_2(2pi,0) quad P_3(0,2pi) quad P_4(2 / 3 pi, 2 / 3 pi) $ -$ => z_min = 0, z_max=sqrt(3) / 2 quad forall x in D^o $ +$ => z_min = 0, z_max=3 / 2 sqrt(3) quad forall x in D^o $ 边界上的情况,我们分成三段: @@ -531,7 +539,7 @@ dcases( (x,y,z) = cal(k) (a,b,c) quad=>quad cal(k)=sqrt(3) / 3 $ -此时 $V = 8x y z = 8/9 sqrt(3)$, 为最大值. +此时 $V = 8x y z = 8/9 sqrt(3) a b c$, 为最大值. #image("imgs/13.png", width: 50%) @@ -557,6 +565,7 @@ F(x,y,z)=sqrt(x)-sqrt(y)-sqrt(z)-sqrt(a) eq.triple 0\ dif F = 1 / (2sqrt(x))dif x - 1 / (2sqrt(y))dif y - 1 / (2sqrt(z))dif z = 0\ 1 / (2sqrt(x_0))(x-x_0) - 1 / (2sqrt(y_0))(y-y_0) - 1 / (2sqrt(z_0))(z-z_0) = 0\ x / (2sqrt(x_0)) - y / (2 sqrt(y_0)) - z / (2 sqrt(z_0)) = sqrt(x_0) / 2 - sqrt(y_0) / 2 - sqrt(z_0) / 2\ +x / (sqrt(x_0)) - y / (sqrt(y_0)) - z / (sqrt(z_0)) = sqrt(x_0) - sqrt(y_0) - sqrt(z_0)\ $ 所有截距之和: @@ -568,24 +577,24 @@ $ 四面体体积: $ -1 / 6 l_1 dot l_2 dot l_3 = 1 / 6 sqrt(a) dot sqrt(x_0) dot sqrt(y_0) dot sqrt(z_0) +1 / 6 l_1 dot l_2 dot l_3 = 1 / 6 a^(3/2) dot sqrt(x_0) dot sqrt(y_0) dot sqrt(z_0) $ $ f( x_0, y_0, z_0, mu -) = sqrt(a) dot sqrt(x_0) dot sqrt(y_0) dot sqrt(z_0) - mu(sqrt(x_0) - sqrt(y_0) - sqrt(z_0) - sqrt(a)) \ -f(l,m,n,mu) = l m n - mu(l - m - n - a)\ +) = a^(3/2) dot sqrt(x_0) dot sqrt(y_0) dot sqrt(z_0) - mu(sqrt(x_0) - sqrt(y_0) - sqrt(z_0) - sqrt(a)) \ +f(l,m,n,mu) = a^(3/2) dot l m n - mu(l - m - n - sqrt(a))\ dcases( - (diff f)/(diff l) = m n - mu = 0\ - (diff f)/(diff m) = l n - mu = 0\ - (diff f)/(diff n) = l m - mu = 0\ + (diff f)/(diff l) = a^(3/2) dot m n - mu = 0\ + (diff f)/(diff m) = a^(3/2) dot l n - mu = 0\ + (diff f)/(diff n) = a^(3/2) dot l m - mu = 0\ l m n = a\ )\ -=> quad l = m = n = sqrt(a) +=> quad l = m = n = 1/3 sqrt(a) $ -所以最大四面体面积为 $a^2/6$, 截面: $x-y-z+a=0$ +所以最大四面体面积为 $a^3/162$, 截面: $x-y-z+1/9 a=0$ #pagebreak() === P156 1 @@ -606,7 +615,7 @@ $ $ integral_0^1 dif x integral_0^x f(x,y) dif y+integral_1^2 dif x+integral_0^(2-x) f( x,y -) dif y = integral_0^2 dif y integral_0^(2-y) f(x,y) dif x\ +) dif y = integral_0^2 dif y integral_y^(2-y) f(x,y) dif x\ $ - (6) $ @@ -657,11 +666,11 @@ $ - (2) $ -&quad integral.double_D sin(x+y) dif x dif y quad D=[0,1]times[0,1]\ -&=integral_0^1 dif x integral_0^1 sin(x+y) dif y\ -&=integral_0^1 (-cos(1+x)+cos x) dif x\ -&=-sin 2 + sin 1 + sin 1 - sin 0\ -&=2sin 1 - sin 2 +&quad integral.double_D sin(x+y) dif x dif y quad D=[0,pi]times[0,pi]\ +&=integral_0^pi dif x integral_0^pi sin(x+y) dif y\ +&=integral_0^pi (-cos(pi+x)+cos x) dif x\ +&=-sin 2pi + sin pi + sin pi - sin 0\ +&=0 $ - (3) @@ -777,11 +786,11 @@ $ - (1) $ &quad integral_0^R dif x integral_0^(sqrt(R^2-x^2)) ln(1+x^2+y^2) dif y\ -&= integral_0^(2pi) dif theta integral_0^R ln(1+r^2) r dif r\ -&= 2pi integral_0^R ln(1+r^2) r dif r\ -&= pi integral_0^R^2 ln(1+t) dif t\ -&= pi[(t+1)ln(1+t)-t]_0^R^2\ -&= pi[(R^2+1)ln(1+R^2)-R^2] +&= integral_0^(pi/2) dif theta integral_0^R ln(1+r^2) r dif r\ +&= pi/2 integral_0^R ln(1+r^2) r dif r\ +&= pi/4 integral_0^R^2 ln(1+t) dif t\ +&= pi/4 dot [(t+1)ln(1+t)-t]_0^R^2\ +&= pi/4 dot [(R^2+1)ln(1+R^2)-R^2] $ - (4) @@ -812,8 +821,8 @@ $ $ &quad integral.double_D sqrt(x^2/a^2+y^2/b^2) dif x dif y\ (x=a dot r sin theta, y=b dot r cos theta) & = integral.double_D r dot a b dot r dif r dif theta\ -&= a b integral_0^(arctan(b\/a)) dif theta integral_0^2 r^2 dif r\ -&= 8 / 3 a b dot arctan(b/a) +&= a b integral_0^(arctan(a\/b)) dif theta integral_0^2 r^2 dif r\ +&= 8 / 3 a b dot arctan(a/b) $ - (5) @@ -831,9 +840,9 @@ $ $ integral.double_D x y dif x dif y &= 1 / 3integral.double_D u^1 v^(-1) dif u dif v\ -&= 1 / 3integral_1^2dif u integral_1^2 u / v dif v\ -&= 1 / 3(integral_1^2 u dif u)(integral_1^2 (dif v) / v)\ -&= 1 / 2 ln 2 +&= 1 / 3integral_a^b dif u integral_c^d u / v dif v\ +&= 1 / 3(integral_a^b u dif u)(integral_c^d (dif v) / v)\ +&= 1 / 6 (b^2-a^2)(ln d - ln c) $ - (8) @@ -871,7 +880,7 @@ $ $ integral.double_D dif x dif y &= integral.double_D u / (1+v)^2 dif u dif v\ &=(integral_a^b u dif u)(integral_k^m (dif v) / (1+v)^2)\ - &=(b^2-a^2)(arctan(m) - arctan(k)) + &=1/2(b^2-a^2)(arctan(m) - arctan(k)) $ // #pagebreak()