-
Notifications
You must be signed in to change notification settings - Fork 44
/
normal.py
395 lines (306 loc) · 15.5 KB
/
normal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import ipdb
import torch
import kaolin
import torchvision
import numpy as np
from dmtet_network import Decoder
# ------------ get normal mesh -----------------
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return torch.sum(x*y, -1, keepdim=True)
def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor:
return 2*dot(x, n)*n - x
def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN
def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
return x / length(x, eps)
def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor:
return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w)
class Mesh:
def __init__(self, v_pos=None, t_pos_idx=None, v_nrm=None, t_nrm_idx=None, v_tex=None, t_tex_idx=None, v_tng=None, t_tng_idx=None,
v_weights=None, bone_mtx=None, material=None, base=None):
self.v_pos = v_pos
self.v_weights = v_weights
self.v_nrm = v_nrm
self.v_tex = v_tex
self.v_tng = v_tng
self.t_pos_idx = t_pos_idx
self.t_nrm_idx = t_nrm_idx
self.t_tex_idx = t_tex_idx
self.t_tng_idx = t_tng_idx
self.material = material
self.bone_mtx = bone_mtx
if base is not None:
self.copy_none(base)
def copy_none(self, other):
if self.v_pos is None:
self.v_pos = other.v_pos
if self.v_weights is None:
self.v_weights = other.v_weights
if self.t_pos_idx is None:
self.t_pos_idx = other.t_pos_idx
if self.v_nrm is None:
self.v_nrm = other.v_nrm
if self.t_nrm_idx is None:
self.t_nrm_idx = other.t_nrm_idx
if self.v_tex is None:
self.v_tex = other.v_tex
if self.t_tex_idx is None:
self.t_tex_idx = other.t_tex_idx
if self.v_tng is None:
self.v_tng = other.v_tng
if self.t_tng_idx is None:
self.t_tng_idx = other.t_tng_idx
if self.material is None:
self.material = other.material
if self.bone_mtx is None:
self.bone_mtx = other.bone_mtx
def get_frames(self):
return self.bone_mtx.shape[0] if self.bone_mtx is not None else 1
def clone(self):
out = Mesh(base=self)
if out.v_pos is not None:
out.v_pos = out.v_pos.clone()
if out.v_weights is not None:
out.v_weights = out.v_weights.clone()
if out.t_pos_idx is not None:
out.t_pos_idx = out.t_pos_idx.clone()
if out.v_nrm is not None:
out.v_nrm = out.v_nrm.clone()
if out.t_nrm_idx is not None:
out.t_nrm_idx = out.t_nrm_idx.clone()
if out.v_tex is not None:
out.v_tex = out.v_tex.clone()
if out.t_tex_idx is not None:
out.t_tex_idx = out.t_tex_idx.clone()
if out.v_tng is not None:
out.v_tng = out.v_tng.clone()
if out.t_tng_idx is not None:
out.t_tng_idx = out.t_tng_idx.clone()
if out.bone_mtx is not None:
out.bone_mtx = out.bone_mtx.clone()
return out
def eval(self, params={}):
return self
def auto_normals(mesh):
class mesh_op_auto_normals:
def __init__(self, input):
self.input = input
def eval(self, params={}):
imesh = self.input.eval(params)
i0 = imesh.t_pos_idx[:, 0]
i1 = imesh.t_pos_idx[:, 1]
i2 = imesh.t_pos_idx[:, 2]
v0 = imesh.v_pos[i0, :]
v1 = imesh.v_pos[i1, :]
v2 = imesh.v_pos[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
# Splat face normals to vertices
v_nrm = torch.zeros_like(imesh.v_pos)
v_nrm.scatter_add_(0, i0[:, None].repeat(1,3), face_normals)
v_nrm.scatter_add_(0, i1[:, None].repeat(1,3), face_normals)
v_nrm.scatter_add_(0, i2[:, None].repeat(1,3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
v_nrm = torch.where(dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda'))
self.v_nrm = safe_normalize(v_nrm)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(self.v_nrm))
return Mesh(v_nrm = self.v_nrm, t_nrm_idx=imesh.t_pos_idx, base = imesh)
return mesh_op_auto_normals(mesh)
def simple_normals(verts, faces):
i0 = faces[:, 0]
i1 = faces[:, 1]
i2 = faces[:, 2]
v0 = verts[i0, :]
v1 = verts[i1, :]
v2 = verts[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
# Splat face normals to vertices
v_nrm = torch.zeros_like(verts)
v_nrm.scatter_add_(0, i0[:, None].repeat(1,3), face_normals)
v_nrm.scatter_add_(0, i1[:, None].repeat(1,3), face_normals)
v_nrm.scatter_add_(0, i2[:, None].repeat(1,3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
v_nrm = torch.where(dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda'))
v_nrm = safe_normalize(v_nrm)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(v_nrm))
return v_nrm
# -------------- dmtet ------------------
# path to the point cloud to be reconstructed
pcd_path = "./dmtet/data/bear_pointcloud.usd"
# path to the output logs (readable with the training visualizer in the omniverse app)
logs_path = './dmtet/logs/'
# We initialize the timelapse that will store USD for the visualization apps
timelapse = kaolin.visualize.Timelapse(logs_path)
device = 'cuda'
lr = 1e-3
laplacian_weight = 0.1
iterations = 200
save_every = 100
multires = 2
grid_res = 128
points = kaolin.io.usd.import_pointclouds(pcd_path)[0].points.to(device)
if points.shape[0] > 100000:
idx = list(range(points.shape[0]))
np.random.shuffle(idx)
idx = torch.tensor(idx[:100000], device=points.device, dtype=torch.long)
points = points[idx]
# The reconstructed object needs to be slightly smaller than the grid to get watertight surface after MT.
center = (points.max(0)[0] + points.min(0)[0]) / 2
max_l = (points.max(0)[0] - points.min(0)[0]).max()
points = ((points - center) / max_l)* 0.9
timelapse.add_pointcloud_batch(category='input',
pointcloud_list=[points.cpu()], points_type = "usd_geom_points")
# # Loading the Tetrahedral Grid
#
# DMTet starts from a uniform tetrahedral grid of predefined resolution, and uses a network to predict the SDF value as well as deviation vector at each grid vertex.
#
# Here we load the pre-generated tetrahedral grid using [Quartet](https://github.com/crawforddoran/quartet) at resolution 128, which has roughly the same number of vertices as a voxel grid of resolution 65. We use a simple MLP + positional encoding to predict the SDF and deviation vectors in DMTet, and initialize the encoded SDF to represent a sphere.
tet_verts = torch.tensor(np.load('./dmtet/data/{}_verts.npz'.format(grid_res))['data'], dtype=torch.float, device=device)
tets = torch.tensor(([np.load('./dmtet/data/{}_tets_{}.npz'.format(grid_res, i))['data'] for i in range(4)]), dtype=torch.long, device=device).permute(1,0)
print (tet_verts.shape, tets.shape)
# Initialize model and create optimizer
model = Decoder(multires=multires).to(device)
model.pre_train_sphere(1000)
# # Preparing the Losses and Regularizer
#
# During training we will use two losses defined on the surface mesh:
# - We use Chamfer Distance as the reconstruction loss. At each step, we randomly sample points from the surface mesh and compute the point-to-point distance to the GT point cloud.
# - DMTet can employ direct regularization on the surface mesh to impose useful geometric constraints. We demonstrate this with a Laplacian loss which encourages the surface to be smooth.
#
# Laplacian regularization using umbrella operator (Fujiwara / Desbrun).
# https://mgarland.org/class/geom04/material/smoothing.pdf
def laplace_regularizer_const(mesh_verts, mesh_faces):
term = torch.zeros_like(mesh_verts)
norm = torch.zeros_like(mesh_verts[..., 0:1])
v0 = mesh_verts[mesh_faces[:, 0], :]
v1 = mesh_verts[mesh_faces[:, 1], :]
v2 = mesh_verts[mesh_faces[:, 2], :]
term.scatter_add_(0, mesh_faces[:, 0:1].repeat(1,3), (v1 - v0) + (v2 - v0))
term.scatter_add_(0, mesh_faces[:, 1:2].repeat(1,3), (v0 - v1) + (v2 - v1))
term.scatter_add_(0, mesh_faces[:, 2:3].repeat(1,3), (v0 - v2) + (v1 - v2))
two = torch.ones_like(v0) * 2.0
norm.scatter_add_(0, mesh_faces[:, 0:1], two)
norm.scatter_add_(0, mesh_faces[:, 1:2], two)
norm.scatter_add_(0, mesh_faces[:, 2:3], two)
term = term / torch.clamp(norm, min=1.0)
return torch.mean(term**2)
def loss_f(mesh_verts, mesh_faces, points, it):
pred_points = kaolin.ops.mesh.sample_points(mesh_verts.unsqueeze(0), mesh_faces, 50000)[0][0]
chamfer = kaolin.metrics.pointcloud.chamfer_distance(pred_points.unsqueeze(0), points.unsqueeze(0)).mean()
if it > iterations//2:
lap = laplace_regularizer_const(mesh_verts, mesh_faces)
return chamfer + lap * laplacian_weight
return chamfer
# # Setting up Optimizer
vars = [p for _, p in model.named_parameters()]
optimizer = torch.optim.Adam(vars, lr=lr)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: max(0.0, 10**(-x*0.0002))) # LR decay over time
# # Training
#
# At every iteration, we first predict SDF and deviation vector at each vertex with the network. Next, we extract the triangular mesh by running Marching Tetrahedra on the grid. We then compute loss functions on the extracted mesh and backpropagate gradient to the network weights. Notice that the topology of the mesh is changing during training, as shown in the output message. The training takes ~5 minutes on a TITAN RTX GPU.
for it in range(iterations):
pred = model(tet_verts) # predict SDF and per-vertex deformation
sdf, deform = pred[:,0], pred[:,1:]
verts_deformed = tet_verts + torch.tanh(deform) / grid_res # constraint deformation to avoid flipping tets
mesh_verts, mesh_faces = kaolin.ops.conversions.marching_tetrahedra(verts_deformed.unsqueeze(0), tets, sdf.unsqueeze(0)) # running MT (batched) to extract surface mesh
mesh_verts, mesh_faces = mesh_verts[0], mesh_faces[0]
loss = loss_f(mesh_verts, mesh_faces, points, it)
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
if (it) % save_every == 0 or it == (iterations - 1):
print ('Iteration {} - loss: {}, # of mesh vertices: {}, # of mesh faces: {}'.format(it, loss, mesh_verts.shape[0], mesh_faces.shape[0]))
# save reconstructed mesh
timelapse.add_mesh_batch(
iteration=it+1,
category='extracted_mesh',
vertices_list=[mesh_verts.cpu()],
faces_list=[mesh_faces.cpu()]
)
# # Visualize Training
#
# You can now use [the Omniverse app](https://docs.omniverse.nvidia.com/app_kaolin/app_kaolin) to visualize the mesh optimization over training by using the training visualizer on "./logs/", where we stored the checkpoints.
#
# Alternatively, you can use [kaolin-dash3d](https://kaolin.readthedocs.io/en/latest/notes/checkpoints.html?highlight=usd#visualizing-with-kaolin-dash3d) to visualize the checkpoint by running <code>kaolin-dash3d --logdir=$logs_path --port=8080</code>. This command will launch a web server that will stream geometry to web clients. You can view the input point cloud and the reconstructed mesh at [localhost:8080](localhost:8080) as shown below. You can change the *global iteration* on the left to see how the mesh evolves during training.
#
# -------------------
mesh_normals = simple_normals(mesh_verts, mesh_faces)
# opt_base_mesh = Mesh(v_pos_opt, normalized_base_mesh.t_pos_idx, material=opt_material, base=normalized_base_mesh)
# # Scale from [-1, 1] local coordinate space to match extents of the reference mesh
# opt_base_mesh = mesh.align_with_reference(opt_base_mesh, ref_mesh)
# # Compute smooth vertex normals
# opt_base_mesh = mesh.auto_normals(opt_base_mesh)
# color_opt = render.render_mesh(glctx, _opt_detail, mvp, campos, lightpos, FLAGS.light_power, iter_res,
# spp=iter_spp, num_layers=FLAGS.layers, msaa=True , background=randomBgColor,
# min_roughness=FLAGS.min_roughness)
# img_loss = image_loss_fn(color_opt, color_ref)
# -----------dr-------------
import nvdiffrast.torch as dr
import util
# Transform vertex positions to clip space
def transform_pos(mtx, pos):
t_mtx = torch.from_numpy(mtx).cuda() if isinstance(mtx, np.ndarray) else mtx
# (x,y,z) -> (x,y,z,1)
posw = torch.cat([pos, torch.ones([pos.shape[0], 1]).cuda()], axis=1)
return torch.matmul(posw, t_mtx.t())[None, ...]
def render(glctx, mtx, pos, pos_idx, vtx_col, col_idx, resolution: int):
pos_clip = transform_pos(mtx, pos)
rast_out, _ = dr.rasterize(glctx, pos_clip, pos_idx, resolution=[resolution, resolution])
color, _ = dr.interpolate(vtx_col[None, ...], rast_out, col_idx)
color = dr.antialias(color, rast_out, pos_clip, pos_idx)
return color
def make_grid(arr, ncols=2):
n, height, width, nc = arr.shape
nrows = n//ncols
assert n == nrows*ncols
return arr.reshape(nrows, ncols, height, width, nc).swapaxes(1,2).reshape(height*nrows, width*ncols, nc)
log_file = None
writer = None
# Create position/triangle index tensors
# pos_idx = torch.from_numpy(mesh_faces.astype(np.int32)).cuda()
# col_idx = torch.from_numpy(mesh_faces.astype(np.int32)).cuda()
# vtx_pos = torch.from_numpy(mesh_verts.astype(np.float32)).cuda()
# vtx_col = torch.from_numpy(mesh_normals.astype(np.float32)).cuda()
pos_idx = mesh_faces.int()
col_idx = mesh_faces.int()
vtx_pos = mesh_verts
vtx_col = mesh_normals
# Rasterizer context
glctx = dr.RasterizeGLContext() if False else dr.RasterizeCudaContext()
# Repeats.
ang = 0.0
gl_avg = []
# vtx_pos_rand = np.random.uniform(-0.5, 0.5, size=mesh_verts.shape) + mesh_verts
# vtx_col_rand = np.random.uniform(0.0, 1.0, size=mesh_normals.shape)
# vtx_pos_opt = torch.tensor(vtx_pos_rand, dtype=torch.float32, device='cuda', requires_grad=True)
# vtx_col_opt = torch.tensor(vtx_col_rand, dtype=torch.float32, device='cuda', requires_grad=True)
# Adam optimizer for vertex position and color with a learning rate ramp.
# optimizer = torch.optim.Adam([vtx_pos_opt, vtx_col_opt], lr=1e-2)
# scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: max(0.01, 10**(-x*0.0005)))
# Random rotation/translation matrix for optimization.
r_rot = util.random_rotation_translation(0.25)
# Smooth rotation for display.
a_rot = np.matmul(util.rotate_x(-0.4), util.rotate_y(ang))
# Modelview and modelview + projection matrices.
proj = util.projection(x=0.4)
r_mv = np.matmul(util.translate(0, 0, -3.5), r_rot)
r_mvp = np.matmul(proj, r_mv).astype(np.float32)
a_mv = np.matmul(util.translate(0, 0, -3.5), a_rot)
a_mvp = np.matmul(proj, a_mv).astype(np.float32)
# Compute geometric error for logging.
# with torch.no_grad():
# geom_loss = torch.mean(torch.sum((torch.abs(vtx_pos_opt) - .5)**2, dim=1)**0.5)
# gl_avg.append(float(geom_loss))
# Print/save log.
# gl_val = np.mean(np.asarray(gl_avg))
# gl_avg = []
# s = ("rep=%d," % rep) if repeats > 1 else ""
# s += "iter=%d,err=%f" % (it, gl_val)
# print(s)
# if log_file:
# log_file.write(s + "\n")
ipdb.set_trace()
color = render(glctx, r_mvp, vtx_pos, pos_idx, vtx_col, col_idx, 256)
torchvision.utils.save_image(color.swapaxes(1,3).swapaxes(2,3),"./dmtet/norm.png")