forked from KirkMcDonald/kirkmcdonald.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
circlepath.js
311 lines (291 loc) · 9.06 KB
/
circlepath.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/*Copyright 2019 Kirk McDonald
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.*/
class CirclePath {
constructor(nx, ny, pairs) {
let {x, y} = pairs[0]
let r = null
let sweep = null
// (x, y): The coordinate.
// (nx, ny): The unit vector tangent to the curve at this point.
// r: The radius of the circle leading to this point.
// sweep: 1 = clockwise, 0 = counter-clockwise
// r and sweep are null for the first point, as there is no circle
// leading to it.
let points = [{x, y, nx, ny, r, sweep}]
let prevX = x
let prevY = y
for (let {x, y} of pairs.slice(1)) {
let dx = (x - prevX) / 2
let dy = (y - prevY) / 2
let t = nx*dx + ny*dy
let r1 = -ny*dx + nx*dy
// If deflection is less than one pixel, draw a straight line.
if (-0.5 < r1 && r1 < 0.5) {
let r = null
let sweep = null
// Still update n vector.
let [normdx, normdy] = norm([dx, dy])
let dot = nx*normdx + ny*normdy
nx = 2*dot*normdx - nx
ny = 2*dot*normdy - ny
points.push({x, y, nx, ny, r, sweep})
prevX = x
prevY = y
continue
}
let sweep = 1
let npx = -ny
let npy = nx
if (r1 < 0) {
sweep = 0
r1 = -r1
npx = -npx
npy = -npy
}
let r = r1 + t**2 / r1
let cx = npx * r
let cy = npy * r
// compute new tangent
npx = (cx - 2*dx) / r
npy = (cy - 2*dy) / r
nx = npy
ny = -npx
if (sweep === 0) {
nx = -nx
ny = -ny
}
points.push({x, y, nx, ny, r, sweep})
prevX = x
prevY = y
}
this.points = points
}
path() {
let {x, y} = this.points[0]
let parts = [`M ${x},${y}`]
for (let {x, y, r, sweep} of this.points.slice(1)) {
if (r === null || Number.isNaN(r)) {
parts.push(`L ${x},${y}`)
continue
}
parts.push(`A ${r} ${r} 0 0 ${sweep} ${x} ${y}`)
}
return parts.join(" ")
}
offset(offset) {
let tx = this.points[0].nx
let ty = this.points[0].ny
let points = []
for (let {x, y, nx, ny} of this.points) {
points.push({x: x + -ny*offset, y: y + nx*offset})
}
return new CirclePath(tx, ty, points)
}
transpose() {
let points = []
for (let {x, y, nx, ny, r, sweep} of this.points) {
if (sweep === 0) {
sweep = 1
} else if (sweep === 1) {
sweep = 0
}
points.push({
x: y,
y: x,
nx: ny,
ny: nx,
r: r,
sweep: sweep,
})
}
let obj = Object.create(CirclePath.prototype)
obj.points = points
return obj
}
}
function norm([x, y]) {
let d = Math.sqrt(x**2 + y**2)
return [x/d, y/d]
}
const MIN_RADIUS = 10
// Paths come in four kinds. All mentioned slopes are within the frame of
// reference of the initial tangent vector.
// (E.g. when t is <1, 0>, slopes have the usual meaning.)
// 1) Straight line
// Used when slope == 0.
// 2) Double arcs
// Used when slope of overall line is in the range [-0.75, 0.75],
// excluding 0.
//
// Consists of two circular arcs, one beginning at the start point and
// terminating at the middle, the other beginning at the middle and
// terminating at the end point.
// 3) Initial adjustment w/ double arcs
// Used with steeper slopes than the previous, so long as the first
// critical point is located before the line crossing through the center
// with double the slope.
//
// Similar to the double arcs, but with a short initial curve on either
// end to permit the slope at the middle point to equal double the
// overall slope (similar to a cubic Bezier curve).
// 4) Initial adjustment w/ straight line
// Used as final fallback in all other cases.
//
// Generally only needed when the overall slope is too steep for other
// approaches to be feasible.
// Vector from start point to end point in reference frame of tangent vector.
function toFrame(tx, ty, x, y) {
let dotx = tx*x + ty*y
let doty = -ty*x + tx*y
return [dotx, doty]
}
function fromFrame(tx, ty, x, y) {
return toFrame(tx, -ty, x, y)
}
function frameSlope(tx, ty, x1, y1, x2, y2) {
let dx = x2 - x1
let dy = y2 - y1
let [fx, fy] = toFrame(tx, ty, dx, dy)
if (fx === 0) {
return null
}
return fy/fx
}
function linePath(tx, ty, x1, y1, x2, y2) {
return new CirclePath(tx, ty, [
{x: x1, y: y1},
{x: x2, y: y2},
])
}
function doubleArcPath(tx, ty, x1, y1, x2, y2) {
let midx = (x1 + x2) / 2
let midy = (y1 + y2) / 2
return new CirclePath(tx, ty, [
{x: x1, y: y1},
{x: midx, y: midy},
{x: x2, y: y2},
])
}
// Vector transpose functions in SVG coord space (i.e. inverted y axis).
function R(x, y) {
return [-y, x]
}
function L(x, y) {
return [y, -x]
}
function doubleArcAdjustPath(tx, ty, x1, y1, x2, y2, width) {
let dx = x2 - x1
let dy = y2 - y1
let [fx, fy] = toFrame(tx, ty, dx, dy)
let T
if (fy > 0) {
// Curving to right.
T = R
} else {
// Curving to left.
T = L
}
let [nx, ny] = T(tx, ty)
// radius of first circle
let r = width/2 + MIN_RADIUS
// center point of first circle
let cx = x1 + nx*r
let cy = y1 + ny*r
// center point of whole curve
let p3x = (x1 + x2) / 2
let p3y = (y1 + y2) / 2
// desired tangent vector at center point
let [ctx, cty] = fromFrame(tx, ty, fx/2, fy)
// unit vector normal to tangent at center point
// (points at center of second circle)
let [cnx, cny] = norm(T(ctx, cty))
// proceed from p3, r units towards center of circle 2
let midx = p3x + cnx*r
let midy = p3y + cny*r
// vector pointing from center of circle 1, to that point
let crossx = midx - cx
let crossy = midy - cy
// unit vector pointing from midpoint of that cross-vector, to center of
// circle 2
let [mx, my] = norm(T(crossx, crossy))
// reflect cn over m; gives unit vector pointing from center of circle 1
// to center of circle 2
let dot = cnx*mx + cny*my
let ox = 2*dot*mx - cnx
let oy = 2*dot*my - cny
// calculate points 2 and 4
let p2x = cx + -ox*r
let p2y = cy + -oy*r
let p4x = x2 - (p2x - x1)
let p4y = y2 - (p2y - y1)
return new CirclePath(tx, ty, [
{x: x1, y: y1},
{x: p2x, y: p2y},
{x: p3x, y: p3y},
{x: p4x, y: p4y},
{x: x2, y: y2},
])
}
function lineAdjustPath(tx, ty, x1, y1, x2, y2, width) {
let dx = x2 - x1
let dy = y2 - y1
let [fx, fy] = toFrame(tx, ty, dx, dy)
let T
if (fy > 0) {
// Curving to right.
T = R
} else {
// Curving to left.
T = L
}
let [nx, ny] = T(tx, ty)
// radius of both circles
let r = width/2 + MIN_RADIUS
// center points of both circles
let r1x = x1 + nx*r
let r1y = y1 + ny*r
let r2x = x2 - nx*r
let r2y = y2 - ny*r
// center point of whole curve
let cx = (x1 + x2) / 2
let cy = (y1 + y2) / 2
// distance between circle center and curve center
let d = Math.sqrt((cx - r1x)**2 + (cy - r1y)**2)
// unit vector from circle center to curve center
let ax = (cx - r1x) / d
let ay = (cy - r1y) / d
// normal pointing towards inflection point
let [bx, by] = T(-ax, -ay)
// A wee spot o' trig.
let d1 = r**2/d
let h = r**2 - Math.sqrt(r**2 - r**4/d**2)
let px = ax*d1 + bx*h
let py = ay*d1 + by*h
return new CirclePath([
{x: x1, y: y1},
{x: r1x + px, y: r1y + py},
{x: r2x - px, y: r2y - py},
{x: x2, y: y2},
])
}
function makeCurve(tx, ty, x1, y1, x2, y2, width) {
let dx = x2 - x1
let dy = y2 - y1
let [fx, fy] = toFrame(tx, ty, dx, dy)
if (fy === 0) {
return linePath(tx, ty, x1, y1, x2, y2)
}
let slope = fy/fx
if (-0.75 <= slope && slope <= 0.75) {
return doubleArcPath(tx, ty, x1, y1, x2, y2)
}
return doubleArcAdjustPath(tx, ty, x1, y1, x2, y2, width)
}