diff --git a/seismostats/analysis/estimate_mc.py b/seismostats/analysis/estimate_mc.py index 01d562b..6bc7105 100644 --- a/seismostats/analysis/estimate_mc.py +++ b/seismostats/analysis/estimate_mc.py @@ -95,8 +95,8 @@ def empirical_cdf( if mc is None: mc = np.min(sample) - idx = np.argsort(sample) - x = sample[idx] + idx1 = np.argsort(sample) + x = sample[idx1] x, y_count = np.unique(x, return_counts=True) # add empty bins @@ -106,15 +106,15 @@ def empirical_cdf( if mag_bin not in x: x = np.append(x, mag_bin) y_count = np.append(y_count, 0) - idx = np.argsort(x) - x = x[idx] - y_count = y_count[idx] + idx2 = np.argsort(x) + x = x[idx2] + y_count = y_count[idx2] # estimate the CDF if weights is None: y = np.cumsum(y_count) / len(sample) else: - weights_sorted = weights[idx] + weights_sorted = weights[idx1] y = np.cumsum(weights_sorted) / weights_sorted.sum() # make sure that y is zero if there are no samples in the first bins @@ -122,8 +122,7 @@ def empirical_cdf( if y_loop > 0: break leading_zeros = np.zeros(ii) - - y = leading_zeros.append(y[np.cumsum(y_count[ii:]) - 1]) + y = np.append(leading_zeros, y[np.cumsum(y_count[ii:]) - 1]) return x, y diff --git a/seismostats/analysis/tests/test_estimate_mc.py b/seismostats/analysis/tests/test_estimate_mc.py index 2eb66d1..abd018c 100644 --- a/seismostats/analysis/tests/test_estimate_mc.py +++ b/seismostats/analysis/tests/test_estimate_mc.py @@ -128,6 +128,21 @@ def test_empirical_cdf(setup_magnitudes, delta_m=0.1): assert_equal(len(x), len(y)) assert_equal(y[0], 0.06) + # test that weights function the way that they should + # 1. with equal weights + magnitudes = np.array([0.5, 0.6, 0.7, 0.8, 0.9]) + weights = np.array([1, 1, 1, 1, 1]) + x, y = empirical_cdf(magnitudes, mc=0, delta_m=0.1, weights=weights) + assert_almost_equal(x, np.arange(0, 1, 0.1)) + assert_almost_equal(y, [0, 0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1]) + + # 2. with different weights + magnitudes = np.array([0.5, 0.6, 0.7, 0.8, 0.9]) + weights = np.array([0.5, 0.5, 0.5, 0.5, 3]) + x, y = empirical_cdf(magnitudes, mc=0, delta_m=0.1, weights=weights) + assert_almost_equal(x, np.arange(0, 1, 0.1)) + assert_almost_equal(y, [0, 0, 0, 0, 0, 0.1, 0.2, 0.3, 0.4, 1]) + @pytest.fixture def setup_ks_dists():