-
Notifications
You must be signed in to change notification settings - Fork 152
/
simplicial.tex
7008 lines (6381 loc) · 229 KB
/
simplicial.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Simplicial Methods}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This is a minimal introduction to simplicial methods.
We just add here whenever something is needed later on.
A general reference to this material is perhaps \cite{SimpHom}.
An example of the things you can do is the paper
by Quillen on Homotopical Algebra, see \cite{Quillen}
or the paper on \'Etale Homotopy by Artin and Mazur, see \cite{ArtinMazur}.
\section{The category of finite ordered sets}
\label{section-Delta}
\noindent
The category $\Delta$ is the category with
\begin{enumerate}
\item objects $[0], [1], [2], \ldots$ with
$[n] = \{0, 1, 2, \ldots, n\}$ and
\item a morphism $[n] \to [m]$ is a nondecreasing map
$\{0, 1, 2, \ldots, n\} \to \{0, 1, 2, \ldots, m\}$
between the corresponding sets.
\end{enumerate}
Here {\it nondecreasing} for a map $\varphi : [n] \to [m]$
means by definition that $\varphi(i) \geq \varphi(j)$ if $i \geq j$.
In other words, $\Delta$ is a category equivalent to the
``big'' category of nonempty finite totally ordered sets and nondecreasing maps.
There are exactly $n + 1$ morphisms $[0] \to [n]$ and
there is exactly $1$ morphism $[n] \to [0]$. There are
exactly $(n + 1)(n + 2)/2$ morphisms $[1] \to [n]$ and there are
exactly $n + 2$ morphisms $[n] \to [1]$. And so on and so forth.
\begin{definition}
\label{definition-face-degeneracy}
For any integer $n\geq 1$, and any $0\leq j \leq n$ we let
{\it $\delta^n_j : [n-1] \to [n]$}
denote the injective order preserving map skipping $j$. For any
integer $n\geq 0$, and any $0\leq j \leq n$ we denote
{\it $\sigma^n_j : [n + 1] \to [n]$}
the surjective order preserving map with
$(\sigma^n_j)^{-1}(\{j\}) = \{j, j + 1\}$.
\end{definition}
\begin{lemma}
\label{lemma-face-degeneracy}
Any morphism in $\Delta$ can be written as a composition
of the morphisms $\delta^n_j$ and $\sigma^n_j$.
\end{lemma}
\begin{proof}
Let $\varphi : [n] \to [m]$ be a morphism of $\Delta$.
If $j \not \in \Im(\varphi)$, then we can write
$\varphi$ as $\delta^m_j \circ \psi$ for some morphism
$\psi : [n] \to [m - 1]$. If $\varphi(j) = \varphi(j + 1)$
then we can write $\varphi$ as $\psi \circ \sigma^{n - 1}_j$
for some morphism $\psi : [n - 1] \to [m]$.
The result follows because each replacement
as above lowers $n + m$ and hence at some point
$\varphi$ is both injective and surjective, hence
an identity morphism.
\end{proof}
\begin{lemma}
\label{lemma-relations-face-degeneracy}
The morphisms $\delta^n_j$ and $\sigma^n_j$ satisfy the following relations.
\begin{enumerate}
\item If $0 \leq i < j \leq n + 1$, then
$\delta^{n + 1}_j \circ \delta^n_i =
\delta^{n + 1}_i \circ \delta^n_{j - 1}$.
In other words the diagram
$$
\xymatrix{
& [n] \ar[rd]^{\delta^{n + 1}_j} & \\
[n - 1] \ar[ru]^{\delta^n_i} \ar[rd]_{\delta^n_{j - 1}} & &
[n + 1] \\
& [n] \ar[ru]_{\delta^{n + 1}_i} &
}
$$
commutes.
\item If $0 \leq i < j \leq n - 1$, then
$\sigma^{n - 1}_j \circ \delta^n_i =
\delta^{n - 1}_i \circ \sigma^{n - 2}_{j - 1}$.
In other words the diagram
$$
\xymatrix{
& [n] \ar[rd]^{\sigma^{n - 1}_j} & \\
[n - 1] \ar[ru]^{\delta^n_i} \ar[rd]_{\sigma^{n - 2}_{j - 1}} & &
[n - 1] \\
& [n - 2] \ar[ru]_{\delta^{n - 1}_i} &
}
$$
commutes.
\item If $0 \leq j \leq n - 1$, then
$\sigma^{n - 1}_j \circ \delta^n_j = \text{id}_{[n - 1]}$
and
$\sigma^{n - 1}_j \circ \delta^n_{j + 1} = \text{id}_{[n - 1]}$.
In other words the diagram
$$
\xymatrix{
& [n] \ar[rd]^{\sigma^{n - 1}_j} & \\
[n - 1]
\ar[ru]^{\delta^n_j}
\ar[rd]_{\delta^n_{j + 1}}
\ar[rr]^{\text{id}_{[n - 1]}} & & [n - 1] \\
& [n] \ar[ru]_{\sigma^{n - 1}_j} &
}
$$
commutes.
\item If $0 < j + 1 < i \leq n$, then
$\sigma^{n - 1}_j \circ \delta^n_i =
\delta^{n - 1}_{i - 1} \circ \sigma^{n - 2}_j$.
In other words the diagram
$$
\xymatrix{
& [n] \ar[rd]^{\sigma^{n - 1}_j} & \\
[n - 1] \ar[ru]^{\delta^n_i} \ar[rd]_{\sigma^{n - 2}_j} & &
[n - 1] \\
& [n - 2] \ar[ru]_{\delta^{n - 1}_{i - 1}} &
}
$$
commutes.
\item If $0 \leq i \leq j \leq n - 1$, then
$\sigma^{n - 1}_j \circ \sigma^n_i =
\sigma^{n - 1}_i \circ \sigma^n_{j + 1}$.
In other words the diagram
$$
\xymatrix{
& [n] \ar[rd]^{\sigma^{n - 1}_j} & \\
[n + 1] \ar[ru]^{\sigma^n_i} \ar[rd]_{\sigma^n_{j + 1}} & &
[n - 1] \\
& [n] \ar[ru]_{\sigma^{n - 1}_i} &
}
$$
commutes.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-face-degeneracy-category}
The category $\Delta$ is the universal category
with objects $[n]$, $n \geq 0$ and morphisms
$\delta^n_j$ and $\sigma^n_j$ such that (a) every morphism is
a composition of these morphisms, (b) the relations
listed in Lemma \ref{lemma-relations-face-degeneracy} are satisfied,
and (c) any relation among the morphisms is a consequence of
those relations.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Simplicial objects}
\label{section-simplicial-object}
\begin{definition}
\label{definition-simplicial-object}
Let $\mathcal{C}$ be a category.
\begin{enumerate}
\item A {\it simplicial object $U$ of $\mathcal{C}$}
is a contravariant functor $U$ from $\Delta$ to
$\mathcal{C}$, in a formula:
$$
U : \Delta^{opp} \longrightarrow \mathcal{C}
$$
\item If $\mathcal{C}$ is the category of sets, then we call
$U$ a {\it simplicial set}.
\item If $\mathcal{C}$ is the category of abelian groups,
then we call $U$ a {\it simplicial abelian group}.
\item A {\it morphism of simplicial objects $U \to U'$}
is a transformation of functors.
\item The {\it category of simplicial objects of $\mathcal{C}$}
is denoted $\text{Simp}(\mathcal{C})$.
\end{enumerate}
\end{definition}
\noindent
This means there are objects $U([0]), U([1]), U([2]), \ldots$
and for $\varphi$ any nondecreasing map $\varphi : [m] \to [n]$
a morphism $U(\varphi) : U([n]) \to U([m])$, satisfying
$U(\varphi \circ \psi) = U(\psi) \circ U(\varphi)$.
\medskip\noindent
In particular there is a unique morphism $U([0]) \to U([n])$ and there are
exactly $n + 1$ morphisms $U([n]) \to U([0])$ corresponding to
the $n + 1$ maps $[0] \to [n]$. Obviously we need some more notation
to be able to talk
intelligently about these simplicial objects. We do this by considering
the morphisms we singled out in Section \ref{section-Delta} above.
\begin{lemma}
\label{lemma-characterize-simplicial-object}
Let $\mathcal{C}$ be a category.
\begin{enumerate}
\item Given a simplicial object $U$ in $\mathcal{C}$
we obtain a sequence of objects $U_n = U([n])$ endowed
with the morphisms $d^n_j = U(\delta^n_j) : U_n \to U_{n-1}$ and
$s^n_j = U(\sigma^n_j) : U_n \to U_{n + 1}$. These morphisms
satisfy the opposites of the relations displayed in
Lemma \ref{lemma-relations-face-degeneracy}, namely
\begin{enumerate}
\item If $0 \leq i < j \leq n + 1$, then
$d^n_i \circ d^{n + 1}_j = d^n_{j - 1} \circ d^{n + 1}_i$.
\item If $0 \leq i < j \leq n - 1$, then
$d^n_i \circ s^{n - 1}_j = s^{n - 2}_{j - 1} \circ d^{n - 1}_i$.
\item If $0 \leq j \leq n - 1$, then
$\text{id} = d^n_j \circ s^{n - 1}_j = d^n_{j + 1} \circ s^{n - 1}_j$.
\item If $0 < j + 1 < i \leq n$, then
$d^n_i \circ s^{n - 1}_j = s^{n - 2}_j \circ d^{n - 1}_{i - 1}$.
\item If $0 \leq i \leq j \leq n - 1$, then
$s^n_i \circ s^{n - 1}_j = s^n_{j + 1} \circ s^{n - 1}_i$.
\end{enumerate}
\item Conversely, given a sequence of objects $U_n$ and morphisms
$d^n_j$, $s^n_j$ satisfying (1)(a) -- (e) there exists a unique
simplicial object $U$ in $\mathcal{C}$ such that $U_n = U([n])$,
$d^n_j = U(\delta^n_j)$, and $s^n_j = U(\sigma^n_j)$.
\item A morphism between simplicial objects $U$ and $U'$
is given by a family of morphisms $U_n \to U'_n$ commuting
with the morphisms $d^n_j$ and $s^n_j$.
\end{enumerate}
\end{lemma}
\begin{proof}
This follows from Lemma \ref{lemma-face-degeneracy-category}.
\end{proof}
\begin{remark}
\label{remark-relations}
By abuse of notation we sometimes write $d_i : U_n \to U_{n - 1}$
instead of $d^n_i$, and similarly for $s_i : U_n \to U_{n + 1}$.
The relations among the morphisms $d^n_i$ and $s^n_i$
may be expressed as follows:
\begin{enumerate}
\item If $i < j$, then $d_i \circ d_j = d_{j - 1} \circ d_i$.
\item If $i < j$, then $d_i \circ s_j = s_{j - 1} \circ d_i$.
\item We have $\text{id} = d_j \circ s_j = d_{j + 1} \circ s_j$.
\item If $i > j + 1$, then $d_i \circ s_j = s_j \circ d_{i - 1}$.
\item If $i \leq j$, then $s_i \circ s_j = s_{j + 1} \circ s_i$.
\end{enumerate}
This means that whenever the compositions on both the left and the
right are defined then the corresponding equality should hold.
\end{remark}
\noindent
We get a unique morphism $s^0_0 = U(\sigma^0_0) : U_0 \to U_1$ and
two morphisms $d^1_0 = U(\delta^1_0)$, and
$d^1_1 = U(\delta^1_1)$ which are morphisms $U_1 \to U_0$.
There are two morphisms $s^1_0 = U(\sigma^1_0)$, $s^1_1 = U(\sigma^1_1)$
which are morphisms $U_1 \to U_2$. Three morphisms
$d^2_0 = U(\delta^2_0)$, $d^2_1 = U(\delta^2_1)$, $d^2_2 = U(\delta^2_2)$
which are morphisms $U_3 \to U_2$. And so on.
\medskip\noindent
Pictorially we think of $U$ as follows:
$$
\xymatrix{
U_2
\ar@<2ex>[r]
\ar@<0ex>[r]
\ar@<-2ex>[r]
&
U_1
\ar@<1ex>[r]
\ar@<-1ex>[r]
\ar@<1ex>[l]
\ar@<-1ex>[l]
&
U_0
\ar@<0ex>[l]
}
$$
Here the $d$-morphisms are the arrows pointing right and the
$s$-morphisms are the arrows pointing left.
\begin{example}
\label{example-constant-simplicial-object}
The simplest example is the {\it constant} simplicial object with
value $X \in \Ob(\mathcal{C})$. In other words, $U_n = X$ and
all maps are $\text{id}_X$.
\end{example}
\begin{example}
\label{example-fibre-products-simplicial-object}
Suppose that $Y\to X$ is a morphism of $\mathcal{C}$ such that all
the fibred products $Y \times_X Y \times_X \ldots \times_X Y$ exist.
Then we set $U_n$ equal to the $(n + 1)$-fold fibre product,
and we let $\varphi : [n] \to [m]$ correspond to the map
(on ``coordinates'')
$(y_0, \ldots, y_m) \mapsto (y_{\varphi(0)}, \ldots, y_{\varphi(n)})$.
In other words, the map $U_0 = Y \to U_1 = Y \times_X Y$ is the
diagonal map. The two maps $U_1 = Y \times_X Y \to U_0 = Y$ are the
projection maps.
\end{example}
\noindent
Geometrically Example \ref{example-fibre-products-simplicial-object}
above is an important example. It tells us that it is a good
idea to think of the maps $d^n_j : U_n \to U_{n - 1}$
as projection maps (forgetting the $j$th component),
and to think of the maps $s^n_j : U_n \to U_{n + 1}$
as diagonal maps (repeating the $j$th coordinate).
We will return to this in the sections below.
\begin{lemma}
\label{lemma-si-injective}
Let $\mathcal{C}$ be a category.
Let $U$ be a simplicial object of $\mathcal{C}$.
Each of the morphisms $s^n_i : U_n \to U_{n + 1}$
has a left inverse. In particular $s^n_i$ is a monomorphism.
\end{lemma}
\begin{proof}
This is true because $d_i^{n + 1} \circ s^n_i = \text{id}_{U_n}$.
\end{proof}
\section{Simplicial objects as presheaves}
\label{section-simplicial-presheaves}
\noindent
Another observation is that we may think of a simplicial
object of $\mathcal{C}$ as a presheaf with values in $\mathcal{C}$
over $\Delta$. See
Sites, Definition \ref{sites-definition-presheaf}.
And in fact, if $U$, $U'$ are simplicial objects
of $\mathcal{C}$, then we have
\begin{equation}
\label{equation-simplicial-set-presheaf}
\Mor(U, U') = \Mor_{\textit{PSh}(\Delta)}(U, U').
\end{equation}
Some of the material below could be replaced by the more
general constructions in the chapter on sites.
However, it seems a clearer picture arises from the
arguments specific to simplicial objects.
\section{Cosimplicial objects}
\label{section-cosimplicial-object}
\noindent
A cosimplicial object of a category $\mathcal{C}$ could
be defined simply as a simplicial object of the
opposite category $\mathcal{C}^{opp}$. This is not
really how the human brain works, so we introduce
them separately here and point out some simple
properties.
\begin{definition}
\label{definition-cosimplicial-object}
Let $\mathcal{C}$ be a category.
\begin{enumerate}
\item A {\it cosimplicial object $U$ of $\mathcal{C}$}
is a covariant functor $U$ from $\Delta$ to
$\mathcal{C}$, in a formula:
$$
U : \Delta \longrightarrow \mathcal{C}
$$
\item If $\mathcal{C}$ is the category of sets, then we call
$U$ a {\it cosimplicial set}.
\item If $\mathcal{C}$ is the category of abelian groups,
then we call $U$ a {\it cosimplicial abelian group}.
\item A {\it morphism of cosimplicial objects $U \to U'$}
is a transformation of functors.
\item The {\it category of cosimplicial objects of $\mathcal{C}$}
is denoted $\text{CoSimp}(\mathcal{C})$.
\end{enumerate}
\end{definition}
\noindent
This means there are objects $U([0]), U([1]), U([2]), \ldots$
and for $\varphi$ any nondecreasing map $\varphi : [m] \to [n]$
a morphism $U(\varphi) : U([m]) \to U([n])$, satisfying
$U(\varphi \circ \psi) = U(\varphi) \circ U(\psi)$.
\medskip\noindent
In particular there is a unique morphism $U([n]) \to U([0])$ and there are
exactly $n + 1$ morphisms $U([0]) \to U([n])$ corresponding to
the $n + 1$ maps $[0] \to [n]$. Obviously we need some more notation
to be able to talk intelligently about these simplicial objects.
We do this by considering the morphisms we singled out in
Section \ref{section-Delta} above.
\begin{lemma}
\label{lemma-characterize-cosimplicial-object}
Let $\mathcal{C}$ be a category.
\begin{enumerate}
\item Given a cosimplicial object $U$ in $\mathcal{C}$
we obtain a sequence of objects $U_n = U([n])$ endowed
with the morphisms $\delta^n_j = U(\delta^n_j) : U_{n - 1} \to U_n$ and
$\sigma^n_j = U(\sigma^n_j) : U_{n + 1} \to U_n$. These morphisms
satisfy the relations displayed in
Lemma \ref{lemma-relations-face-degeneracy}.
\item Conversely, given a sequence of objects $U_n$ and morphisms
$\delta^n_j$, $\sigma^n_j$ satisfying these relations there exists a unique
cosimplicial object $U$ in $\mathcal{C}$ such that $U_n = U([n])$,
$\delta^n_j = U(\delta^n_j)$, and $\sigma^n_j = U(\sigma^n_j)$.
\item A morphism between cosimplicial objects $U$ and $U'$
is given by a family of morphisms $U_n \to U'_n$ commuting
with the morphisms $\delta^n_j$ and $\sigma^n_j$.
\end{enumerate}
\end{lemma}
\begin{proof}
This follows from Lemma \ref{lemma-face-degeneracy-category}.
\end{proof}
\begin{remark}
\label{remark-relations-cosimplicial}
By abuse of notation we sometimes write $\delta_i : U_{n - 1} \to U_n$
instead of $\delta^n_i$, and similarly for $\sigma_i : U_{n + 1} \to U_n$.
The relations among the morphisms $\delta^n_i$ and $\sigma^n_i$
may be expressed as follows:
\begin{enumerate}
\item If $i < j$, then
$\delta_j \circ \delta_i = \delta_i \circ \delta_{j - 1}$.
\item If $i < j$, then
$\sigma_j \circ \delta_i = \delta_i \circ \sigma_{j - 1}$.
\item We have
$\text{id} = \sigma_j \circ \delta_j = \sigma_j \circ \delta_{j + 1}$.
\item If $i > j + 1$, then
$\sigma_j \circ \delta_i = \delta_{i - 1} \circ \sigma_j$.
\item If $i \leq j$, then
$\sigma_j \circ \sigma_i = \sigma_i \circ \sigma_{j + 1}$.
\end{enumerate}
This means that whenever the compositions on both the left and the
right are defined then the corresponding equality should hold.
\end{remark}
\noindent
We get a unique morphism $\sigma^0_0 = U(\sigma^0_0) : U_1 \to U_0$ and
two morphisms $\delta^1_0 = U(\delta^1_0)$, and
$\delta^1_1 = U(\delta^1_1)$ which are morphisms $U_0 \to U_1$.
There are two morphisms
$\sigma^1_0 = U(\sigma^1_0)$, $\sigma^1_1 = U(\sigma^1_1)$
which are morphisms $U_2 \to U_1$. Three morphisms
$\delta^2_0 = U(\delta^2_0)$, $\delta^2_1 = U(\delta^2_1)$,
$\delta^2_2 = U(\delta^2_2)$
which are morphisms $U_2 \to U_3$. And so on.
\medskip\noindent
Pictorially we think of $U$ as follows:
$$
\xymatrix{
U_0
\ar@<1ex>[r]
\ar@<-1ex>[r]
&
U_1
\ar@<0ex>[l]
\ar@<2ex>[r]
\ar@<0ex>[r]
\ar@<-2ex>[r]
&
U_2
\ar@<1ex>[l]
\ar@<-1ex>[l]
}
$$
Here the $\delta$-morphisms are the arrows pointing right and the
$\sigma$-morphisms are the arrows pointing left.
\begin{example}
\label{example-constant-cosimplicial-object}
The simplest example is the {\it constant} cosimplicial object with
value $X \in \Ob(\mathcal{C})$. In other words, $U_n = X$ and
all maps are $\text{id}_X$.
\end{example}
\begin{example}
\label{example-push-outs-simplicial-object}
Suppose that $X\to Y$ is a morphism of $C$ such that all
the pushouts $Y\amalg_X Y \amalg_X \ldots \amalg_X Y$ exist.
Then we set $U_n$ equal to the $(n + 1)$-fold pushout,
and we let $\varphi : [n] \to [m]$ correspond to the map
$$
(y \text{ in }i\text{th component})
\mapsto
(y \text{ in }\varphi(i)\text{th component})
$$
on ``coordinates''.
In other words, the map $U_1 = Y \amalg_X Y \to U_0 = Y$ is the
identity on each component.
The two maps $U_0 = Y \to U_1 = Y \amalg_X Y$ are the two coprojections.
\end{example}
\begin{example}
\label{example-simplex-cosimplicial-set}
For every $n \geq 0$ we denote $C[n]$ the cosimplicial set
$$
\Delta \longrightarrow \textit{Sets},\quad
[k] \longmapsto \Mor_{\Delta}([n], [k])
$$
This example is dual to Example \ref{example-simplex-simplicial-set}.
\end{example}
\begin{lemma}
\label{lemma-di-injective}
Let $\mathcal{C}$ be a category.
Let $U$ be a cosimplicial object of $\mathcal{C}$.
Each of the morphisms $\delta^n_i : U_{n - 1} \to U_n$
has a left inverse. In particular $\delta^n_i$ is a monomorphism.
\end{lemma}
\begin{proof}
This is true because
$\sigma_i^{n - 1} \circ \delta^n_i = \text{id}_{U_n}$
for $j < n$.
\end{proof}
\section{Products of simplicial objects}
\label{section-products}
\noindent
Of course we should define the product of simplicial objects
as the product in the category of simplicial objects. This
may lead to the potentially confusing situation where the product exists
but is not described as below. To avoid this we define the product
directly as follows.
\begin{definition}
\label{definition-product}
Let $\mathcal{C}$ be a category.
Let $U$ and $V$ be simplicial objects of $\mathcal{C}$.
Assume the products $U_n \times V_n$ exist in $\mathcal{C}$.
The {\it product of $U$ and $V$} is the simplicial object
$U \times V$ defined as follows:
\begin{enumerate}
\item $(U \times V)_n = U_n \times V_n$,
\item $d^n_i = (d^n_i, d^n_i)$, and
\item $s^n_i = (s^n_i, s^n_i)$.
\end{enumerate}
In other words, $U \times V$ is the product of the presheaves
$U$ and $V$ on $\Delta$.
\end{definition}
\begin{lemma}
\label{lemma-product}
If $U$ and $V$ are simplicial objects in the category $\mathcal{C}$,
and if $U \times V$ exists, then we have
$$
\Mor(W, U \times V) =
\Mor(W, U) \times
\Mor(W, V)
$$
for any third simplicial object $W$ of $\mathcal{C}$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Fibre products of simplicial objects}
\label{section-fibre-products}
\noindent
Of course we should define the fibre product of simplicial objects
as the fibre product in the category of simplicial objects. This
may lead to the potentially confusing situation where the
fibre product exists but is not described as below. To avoid
this we define the fibre product directly as follows.
\begin{definition}
\label{definition-fibre-product}
Let $\mathcal{C}$ be a category.
Let $U, V, W$ be simplicial objects of $\mathcal{C}$.
Let $a : V \to U$, $b : W \to U$ be morphisms.
Assume the fibre products $V_n \times_{U_n} W_n$ exist in $\mathcal{C}$.
The {\it fibre product of $V$ and $W$ over $U$} is the simplicial object
$V \times_U W$ defined as follows:
\begin{enumerate}
\item $(V \times_U W)_n = V_n \times_{U_n} W_n$,
\item $d^n_i = (d^n_i, d^n_i)$, and
\item $s^n_i = (s^n_i, s^n_i)$.
\end{enumerate}
In other words, $V \times_U W$ is the fibre product of the presheaves
$V$ and $W$ over the presheaf $U$ on $\Delta$.
\end{definition}
\begin{lemma}
\label{lemma-fibre-product}
If $U, V, W$ are simplicial objects in the category $\mathcal{C}$,
and if $a : V \to U$, $b : W \to U$ are morphisms
and if $V \times_U W$ exists, then we have
$$
\Mor(T, V \times_U W) =
\Mor(T, V) \times_{\Mor(T, U)}
\Mor(T, W)
$$
for any fourth simplicial object $T$ of $\mathcal{C}$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Pushouts of simplicial objects}
\label{section-push-outs}
\noindent
Of course we should define the pushout of simplicial objects
as the pushout in the category of simplicial objects. This
may lead to the potentially confusing situation where the
pushouts exist but are not as described below. To avoid
this we define the pushout directly as follows.
\begin{definition}
\label{definition-push-out}
Let $\mathcal{C}$ be a category.
Let $U, V, W$ be simplicial objects of $\mathcal{C}$.
Let $a : U \to V$, $b : U \to W$ be morphisms.
Assume the pushouts $V_n \amalg_{U_n} W_n$ exist in $\mathcal{C}$.
The {\it pushout of $V$ and $W$ over $U$} is the simplicial object
$V\amalg_U W$ defined as follows:
\begin{enumerate}
\item $(V \amalg_U W)_n = V_n \amalg_{U_n} W_n$,
\item $d^n_i = (d^n_i, d^n_i)$, and
\item $s^n_i = (s^n_i, s^n_i)$.
\end{enumerate}
In other words, $V\amalg_U W$ is the pushout of the presheaves
$V$ and $W$ over the presheaf $U$ on $\Delta$.
\end{definition}
\begin{lemma}
\label{lemma-push-out}
If $U, V, W$ are simplicial objects in the category $\mathcal{C}$,
and if $a : U \to V$, $b : U \to W$ are morphisms
and if $V\amalg_U W$ exists, then we have
$$
\Mor(V\amalg_U W, T) =
\Mor(V, T) \times_{\Mor(U, T)}
\Mor(W, T)
$$
for any fourth simplicial object $T$ of $\mathcal{C}$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Products of cosimplicial objects}
\label{section-products-cosimplicial}
\noindent
Of course we should define the product of cosimplicial objects
as the product in the category of cosimplicial objects. This
may lead to the potentially confusing situation where the product exists
but is not described as below. To avoid this we define the product
directly as follows.
\begin{definition}
\label{definition-product-cosimplicial-objects}
Let $\mathcal{C}$ be a category.
Let $U$ and $V$ be cosimplicial objects of $\mathcal{C}$.
Assume the products $U_n \times V_n$ exist in $\mathcal{C}$.
The {\it product of $U$ and $V$} is the cosimplicial object
$U \times V$ defined as follows:
\begin{enumerate}
\item $(U \times V)_n = U_n \times V_n$,
\item for any $\varphi : [n] \to [m]$ the map
$(U \times V)(\varphi) : U_n \times V_n \to U_m \times V_m$
is the product $U(\varphi) \times V(\varphi)$.
\end{enumerate}
\end{definition}
\begin{lemma}
\label{lemma-product-cosimplicial-objects}
If $U$ and $V$ are cosimplicial objects in the category $\mathcal{C}$,
and if $U \times V$ exists, then we have
$$
\Mor(W, U \times V) =
\Mor(W, U) \times
\Mor(W, V)
$$
for any third cosimplicial object $W$ of $\mathcal{C}$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Fibre products of cosimplicial objects}
\label{section-fibre-products-cosimplicial}
\noindent
Of course we should define the fibre product of cosimplicial objects
as the fibre product in the category of cosimplicial objects. This
may lead to the potentially confusing situation where the product exists
but is not described as below. To avoid this we define the fibre product
directly as follows.
\begin{definition}
\label{definition-fibre-product-cosimplicial-objects}
Let $\mathcal{C}$ be a category.
Let $U, V, W$ be cosimplicial objects of $\mathcal{C}$.
Let $a : V \to U$ and $b : W \to U$ be morphisms.
Assume the fibre products $V_n \times_{U_n} W_n$ exist in $\mathcal{C}$.
The {\it fibre product of $V$ and $W$ over $U$} is the cosimplicial object
$V \times_U W$ defined as follows:
\begin{enumerate}
\item $(V \times_U W)_n = V_n \times_{U_n} W_n$,
\item for any $\varphi : [n] \to [m]$ the map
$(V \times_U W)(\varphi) : V_n \times_{U_n} W_n \to V_m \times_{U_m} W_m$
is the product $V(\varphi) \times_{U(\varphi)} W(\varphi)$.
\end{enumerate}
\end{definition}
\begin{lemma}
\label{lemma-fibre-product-cosimplicial-objects}
If $U, V, W$ are cosimplicial objects in the category $\mathcal{C}$,
and if $a : V \to U$, $b : W \to U$ are morphisms
and if $V \times_U W$ exists, then we have
$$
\Mor(T, V \times_U W) =
\Mor(T, V) \times_{\Mor(T, U)}
\Mor(T, W)
$$
for any fourth cosimplicial object $T$ of $\mathcal{C}$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Simplicial sets}
\label{section-simplicial-set}
\noindent
Let $U$ be a simplicial set. It is a good idea to think of
$U_0$ as the {\it $0$-simplices}, the set $U_1$ as the
{\it $1$-simplices},
the set $U_2$ as the {\it $2$-simplices}, and so on.
\medskip\noindent
We think of the maps $s^n_j : U_n \to U_{n + 1}$ as
the map that associates to an $n$-simplex $A$ the degenerate
$(n + 1)$-simplex $B$ whose $(j, j + 1)$-edge is collapsed
to the vertex $j$ of $A$. We think of the map $d^n_j : U_n \to U_{n - 1}$
as the map that associates to an $n$-simplex $A$ one of the
faces, namely the face that omits the vertex $j$.
In this way it become possible to visualize the relations
among the maps $s^n_j$ and $d^n_j$ geometrically.
\begin{definition}
\label{definition-terminology-simplicial-sets}
Let $U$ be a simplicial set.
We say $x$ is an {\it $n$-simplex of $U$} to signify that
$x$ is an element of $U_n$. We say that $y$ is the $j$th
{\it face of $x$} to signify that $d^n_jx = y$. We say that
$z$ is the $j$th {\it degeneracy of $x$} if $z = s^n_jx$.
A simplex is called {\it degenerate} if it is the degeneracy
of another simplex.
\end{definition}
\noindent
Here are a few fundamental examples.
\begin{example}
\label{example-simplex-simplicial-set}
For every $n \geq 0$ we denote $\Delta[n]$ the simplicial set
$$
\Delta^{opp} \longrightarrow \textit{Sets},\quad
[k] \longmapsto \Mor_{\Delta}([k], [n])
$$
We leave it to the reader to verify the following statements.
Every $m$-simplex of $\Delta[n]$ with $m > n$ is degenerate.
There is a unique nondegenerate $n$-simplex of $\Delta[n]$,
namely $\text{id}_{[n]}$.
\end{example}
\begin{lemma}
\label{lemma-simplex-map}
Let $U$ be a simplicial set. Let $n \geq 0$ be an integer.
There is a canonical bijection
$$
\Mor(\Delta[n], U)
\longrightarrow
U_n
$$
which maps a morphism $\varphi$ to the value of $\varphi$
on the unique nondegenerate $n$-simplex of $\Delta[n]$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{example}
\label{example-simplex-category}
Consider the category $\Delta/[n]$ of objects over $[n]$
in $\Delta$, see
Categories, Example \ref{categories-example-category-over-X}.
There is a functor $p : \Delta/[n] \to \Delta$.
The fibre category of $p$ over $[k]$, see
Categories, Section \ref{categories-section-fibred-groupoids},
has as objects the
set $\Delta[n]_k$ of $k$-simplices in $\Delta[n]$, and as
morphisms only identities. For every morphism
$\varphi : [k] \to [l]$ of $\Delta$, and every object $\psi : [l] \to [n]$
in the fibre category over $[l]$ there is a unique
object over $[k]$ with a morphism covering $\varphi$, namely
$\psi \circ \varphi : [k] \to [n]$. Thus $\Delta/[n]$
is fibred in sets over $\Delta$. In other words, we may
think of $\Delta/[n]$ as a presheaf of sets over $\Delta$.
See also, Categories,
Example \ref{categories-example-fibred-category-from-functor-of-points}.
And this presheaf of sets agrees with the simplicial set
$\Delta[n]$. In particular, from Equation
(\ref{equation-simplicial-set-presheaf}) and
Lemma \ref{lemma-simplex-map} above
we get the formula
$$
\Mor_{\textit{PSh}(\Delta)}(\Delta/[n], U) = U_n
$$
for any simplicial set $U$.
\end{example}
\begin{lemma}
\label{lemma-product-degenerate}
Let $U$, $V$ be simplicial sets.
Let $a, b \geq 0$ be integers.
Assume every $n$-simplex of $U$ is degenerate if $n > a$.
Assume every $n$-simplex of $V$ is degenerate if $n > b$.
Then every $n$-simplex of $U \times V$ is degenerate
if $n > a + b$.
\end{lemma}
\begin{proof}
Suppose $n > a + b$. Let $(u, v) \in (U \times V)_n = U_n \times V_n$.
By assumption, there exists a $\alpha : [n] \to [a]$ and a
$u' \in U_a$ and a $\beta : [n] \to [b]$ and a $v' \in V_b$
such that $u = U(\alpha)(u')$ and $v = V(\beta)(v')$. Because
$n > a + b$, there exists an $0 \leq i \leq a + b$ such that
$\alpha(i) = \alpha(i + 1)$ and
$\beta(i) = \beta(i + 1)$. It follows immediately
that $(u, v)$ is in the image of $s^{n - 1}_i$.
\end{proof}
\section{Truncated simplicial objects and skeleton functors}
\label{section-skeleton}
\noindent
Let $\Delta_{\leq n}$ denote the full subcategory of
$\Delta$ with objects $[0], [1], [2], \ldots, [n]$.
Let $\mathcal{C}$ be a category.
\begin{definition}
\label{definition-truncated-simplicial-object}
An {\it $n$-truncated simplicial object of $\mathcal{C}$}
is a contravariant functor from $\Delta_{\leq n}$ to
$\mathcal{C}$. A {\it morphism of $n$-truncated
simplicial objects} is a transformation of functors.
We denote the category of $n$-truncated
simplicial objects of $\mathcal{C}$ by
the symbol $\text{Simp}_n(\mathcal{C})$.
\end{definition}
\noindent
Given a simplicial object $U$ of $\mathcal{C}$
the truncation $\text{sk}_n U$ is the restriction
of $U$ to the subcategory $\Delta_{\leq n}$.
This defines a {\it skeleton functor}
$$
\text{sk}_n :
\text{Simp}(\mathcal{C}) \longrightarrow \text{Simp}_n(\mathcal{C})
$$
from the category of simplicial objects of $\mathcal{C}$
to the category of $n$-truncated simplicial objects of $\mathcal{C}$.
See Remark \ref{remark-sk-literature} to avoid possible confusion
with other functors in the literature.
\section{Products with simplicial sets}
\label{section-product-with-simplicial-sets}
\noindent
Let $\mathcal{C}$ be a category.
Let $U$ be a simplicial set.
Let $V$ be a simplicial object of $\mathcal{C}$.
We can consider the covariant functor which associates
to a simplicial object $W$ of $\mathcal{C}$
the set
\begin{equation}
\label{equation-functor-product-with-simplicial-set}
\left\{
(f_{n, u} : V_n \to W_n)_{n \geq 0, u \in U_n}
\text{ such that }
\begin{matrix}
\forall \varphi : [m] \to [n] \\
f_{m, U(\varphi)(u)} \circ V(\varphi) = W(\varphi) \circ f_{n, u}
\end{matrix}
\right\}
\end{equation}
If this functor is of the form
$\Mor_{\text{Simp}(\mathcal{C})}(Q, -)$
then we can think of $Q$ as the product of $U$ with $V$.
Instead of formalizing this in this way we just directly
define the product as follows.
\begin{definition}
\label{definition-product-with-simplicial-set}
Let $\mathcal{C}$ be a category such that the coproduct of
any two objects of $\mathcal{C}$ exists. Let
$U$ be a simplicial set. Let $V$ be a simplicial
object of $\mathcal{C}$. Assume that each $U_n$ is
finite nonempty. In this case we define
the {\it product $U \times V$ of $U$ and $V$}
to be the simplicial object of $\mathcal{C}$ whose
$n$th term is the object