-
Notifications
You must be signed in to change notification settings - Fork 152
/
sheaves.tex
5329 lines (4809 loc) · 180 KB
/
sheaves.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Sheaves on Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
Basic properties of sheaves on topological spaces
will be explained in this document.
A reference is \cite{Godement}.
\medskip\noindent
This will be superseded by the discussion of sheaves
over sites later in the documents. But perhaps it makes
sense to briefly define some of the notions here.
\section{Basic notions}
\label{section-sheaves-basic}
\noindent
The following is a list of basic notions in topology.
\begin{enumerate}
\item Let $X$ be a topological space. The phrase: ``Let
$U = \bigcup_{i \in I} U_i$ be an open covering'' means the
following: $I$ is a set and for each $i \in I$ we are given
an open subset $U_i \subset X$ such that $U$ is the
union of the $U_i$. It is allowed to have $I = \emptyset$
in which case there are no $U_i$ and $U = \emptyset$.
It is also allowed, in case $I \not = \emptyset$ to have
any or all of the $U_i$ be empty.
\item etc, etc.
\end{enumerate}
\section{Presheaves}
\label{section-presheaves}
\begin{definition}
\label{definition-presheaf}
Let $X$ be a topological space.
\begin{enumerate}
\item A {\it presheaf $\mathcal{F}$ of sets on $X$} is a rule which
assigns to each open $U \subset X$ a set $\mathcal{F}(U)$ and
to each inclusion $V \subset U$ a map
$\rho^U_V : \mathcal{F}(U) \to \mathcal{F}(V)$ such that
$\rho^U_U = \text{id}_{\mathcal{F}(U)}$ and
whenever $W \subset V \subset U$ we have
$\rho^U_W = \rho^V_W \circ \rho ^U_V$.
\item A {\it morphism $\varphi : \mathcal{F} \to \mathcal{G}$
of presheaves of sets on $X$} is a rule which assigns to each
open $U \subset X$ a map of sets $\varphi : \mathcal{F}(U)
\to \mathcal{G}(U)$ compatible with restriction maps,
i.e., whenever $V \subset U \subset X$ are open the
diagram
$$
\xymatrix{
\mathcal{F}(U) \ar[r]^\varphi \ar[d]^{\rho^U_V} &
\mathcal{G}(U) \ar[d]^{\rho^U_V} \\
\mathcal{F}(V) \ar[r]^\varphi & \mathcal{G}(V)
}
$$
commutes.
\item The category of presheaves of sets on $X$ will be denoted
$\textit{PSh}(X)$.
\end{enumerate}
\end{definition}
\noindent
The elements of the set $\mathcal{F}(U)$ are called
the {\it sections} of $\mathcal{F}$ over $U$.
For every $V \subset U$ the map
$\rho^U_V : \mathcal{F}(U) \to \mathcal{F}(V)$
is called the {\it restriction map}. We will use the
notation $s|_V := \rho^U_V(s)$ if $s\in \mathcal{F}(U)$.
This notation is consistent with the notion of restriction
of functions from topology because if $W \subset V \subset U$
and $s$ is a section of $\mathcal{F}$ over $U$ then
$s|_W = (s|_V)|_W$ by the property of the restriction maps
expressed in the definition above.
\medskip\noindent
Another notation that is often used is to indicate sections
over an open $U$ by the symbol $\Gamma(U, -)$ or by
$H^0(U, -)$. In other words, the following equalities
are tautological
$$
\Gamma(U, \mathcal{F}) = \mathcal{F}(U) = H^0(U, \mathcal{F}).
$$
In this chapter we will not use this notation, but in others
we will.
\begin{definition}
\label{definition-constant-presheaf}
Let $X$ be a topological space. Let $A$ be a set.
The {\it constant presheaf with value $A$} is the
presheaf that assigns the set $A$ to every open
$U \subset X$, and such that all restriction mappings
are $\text{id}_A$.
\end{definition}
\section{Abelian presheaves}
\label{section-abelian-presheaves}
\noindent
In this section we briefly point out some features of the
category of presheaves that allow one to define presheaves
of abelian groups.
\begin{example}
\label{example-singleton-presheaf}
Let $X$ be a topological space. Consider a rule $\mathcal{F}$ that
associates to every open subset of $X$ a singleton set. Since every set
has a unique map into a singleton set, there exist unique restriction
maps $\rho^U_V$. The resulting structure is a presheaf of sets on $X$.
It is a final object in the category of presheaves of sets on $X$, by the
property of singleton sets mentioned above. Hence it is
also unique up to unique isomorphism. We will sometimes write $*$
for this presheaf.
\end{example}
\begin{lemma}
\label{lemma-product-presheaves}
Let $X$ be a topological space. The category of presheaves of sets
on $X$ has products (see
Categories, Definition \ref{categories-definition-product}).
Moreover, the set of
sections of the product $\mathcal{F} \times \mathcal{G}$
over an open $U$ is the product of the sets of sections of
$\mathcal{F}$ and $\mathcal{G}$ over $U$.
\end{lemma}
\begin{proof}
Namely, suppose $\mathcal{F}$ and $\mathcal{G}$ are
presheaves of sets on the topological space $X$.
Consider the rule $U \mapsto \mathcal{F}(U) \times \mathcal{G}(U)$,
denoted $\mathcal{F} \times \mathcal{G}$. If $V \subset U \subset X$
are open then define the restriction mapping
$$
(\mathcal{F} \times \mathcal{G})(U)
\longrightarrow
(\mathcal{F} \times \mathcal{G})(V)
$$
by mapping $(s, t) \mapsto (s|_V, t|_V)$. Then it is immediately
clear that $\mathcal{F} \times \mathcal{G}$ is a presheaf.
Also, there are projection maps
$p : \mathcal{F} \times \mathcal{G} \to \mathcal{F}$
and
$q : \mathcal{F} \times \mathcal{G} \to \mathcal{G}$.
We leave it to the reader to show that
for any third presheaf $\mathcal{H}$ we have
$\Mor(\mathcal{H}, \mathcal{F} \times \mathcal{G})
= \Mor(\mathcal{H}, \mathcal{F}) \times
\Mor(\mathcal{H}, \mathcal{G})$.
\end{proof}
\noindent
Recall that if $(A, + : A \times A \to A, - : A \to A, 0\in A)$
is an abelian group, then the zero and the negation maps are
uniquely determined by the addition law. In other words, it
makes sense to say ``let $(A, +)$ be an abelian group''.
\begin{lemma}
\label{lemma-abelian-presheaves}
Let $X$ be a topological space.
Let $\mathcal{F}$ be a presheaf of sets.
Consider the following types of structure on $\mathcal{F}$:
\begin{enumerate}
\item For every open $U$ the structure of an abelian group
on $\mathcal{F}(U)$ such that all restriction maps are
abelian group homomorphisms.
\item A map of presheaves
$+ : \mathcal{F} \times \mathcal{F} \to \mathcal{F}$,
a map of presheaves $- : \mathcal{F} \to \mathcal{F}$
and a map $0 : * \to \mathcal{F}$
(see Example \ref{example-singleton-presheaf})
satisfying all the axioms of $+, -, 0$ in a usual
abelian group.
\item A map of presheaves
$+ : \mathcal{F} \times \mathcal{F} \to \mathcal{F}$,
a map of presheaves $- : \mathcal{F} \to \mathcal{F}$
and a map $0 : * \to \mathcal{F}$
such that for each open $U \subset X$ the quadruple
$(\mathcal{F}(U), +, -, 0)$ is an abelian group,
\item A map of presheaves $+ : \mathcal{F} \times \mathcal{F}
\to \mathcal{F}$ such that for every open $U \subset X$
the map $+ : \mathcal{F}(U) \times \mathcal{F}(U) \to \mathcal{F}(U)$
defines the structure of an abelian group.
\end{enumerate}
There are natural bijections between the collections of
types of data (1) - (4) above.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\noindent
The lemma says that to give an abelian group object $\mathcal{F}$
in the category of presheaves is the same as giving a presheaf of sets
$\mathcal{F}$ such that all the sets $\mathcal{F}(U)$ are endowed
with the structure of an abelian group and such that all the restriction
mappings are group homomorphisms. For most algebra structures
we will take this approach to (pre)sheaves of such objects, i.e.,
we will define a (pre)sheaf of such objects to be a (pre)sheaf
$\mathcal{F}$ of sets all of whose sets of sections $\mathcal{F}(U)$
are endowed with this structure compatibly with the restriction
mappings.
\begin{definition}
\label{definition-abelian-presheaves}
Let $X$ be a topological space.
\begin{enumerate}
\item A {\it presheaf of abelian groups on $X$} or an
{\it abelian presheaf over $X$}
is a presheaf of sets $\mathcal{F}$ such that for each open
$U \subset X$ the set $\mathcal{F}(U)$ is endowed with
the structure of an abelian group, and such that all restriction
maps $\rho^U_V$ are homomorphisms of abelian groups, see
Lemma \ref{lemma-abelian-presheaves} above.
\item A {\it morphism of abelian presheaves over $X$}
$\varphi : \mathcal{F} \to \mathcal{G}$ is a morphism of presheaves
of sets which induces
a homomorphism of abelian groups $\mathcal{F}(U) \to \mathcal{G}(U)$
for every open $U \subset X$.
\item The category of presheaves of abelian groups on $X$ is denoted
$\textit{PAb}(X)$.
\end{enumerate}
\end{definition}
\begin{example}
\label{example-direct-sum-points}
Let $X$ be a topological space. For each $x \in X$ suppose
given an abelian group $M_x$. For $U \subset X$ open
we set
$$
\mathcal{F}(U) = \bigoplus\nolimits_{x \in U} M_x.
$$
We denote a typical element in this abelian group by
$\sum_{i = 1}^n m_{x_i}$, where $x_i \in U$ and $m_{x_i} \in M_{x_i}$.
(Of course we may always choose our representation such that
$x_1, \ldots, x_n$ are pairwise distinct.)
We define for $V \subset U \subset X$ open a restriction
mapping $\mathcal{F}(U) \to \mathcal{F}(V)$ by
mapping an element $s = \sum_{i = 1}^n m_{x_i}$
to the element $s|_V = \sum_{x_i \in V} m_{x_i}$.
We leave it to the reader to verify that this is a
presheaf of abelian groups.
\end{example}
\section{Presheaves of algebraic structures}
\label{section-presheaves-structures}
\noindent
Let us clarify the definition
of presheaves of algebraic structures.
Suppose that $\mathcal{C}$ is a category and
that $F : \mathcal{C} \to \textit{Sets}$ is
a faithful functor. Typically $F$ is a ``forgetful''
functor. For an object $M \in \Ob(\mathcal{C})$
we often call $F(M)$ the {\it underlying set} of the
object $M$. If $M \to M'$ is a morphism in $\mathcal{C}$
we call $F(M) \to F(M')$ the {\it underlying map of sets}.
In fact, we will often not distinguish between an object
and its underlying set, and similarly for morphisms.
So we will say a map of sets $F(M) \to F(M')$
is a {\it morphism of algebraic structures}, if it is
equal to $F(f)$ for some morphism $f : M \to M'$
in $\mathcal{C}$.
\medskip\noindent
In analogy with Definition \ref{definition-abelian-presheaves}
above a ``presheaf of objects of $\mathcal{C}$'' could be
defined by the following data:
\begin{enumerate}
\item a presheaf of sets $\mathcal{F}$, and
\item for every open $U \subset X$ a choice
of an object $A(U) \in \Ob(\mathcal{C})$
\end{enumerate}
subject to the following conditions (using the phraseology above)
\begin{enumerate}
\item for every open $U \subset X$ the set $\mathcal{F}(U)$
is the underlying set of $A(U)$, and
\item for every $V \subset U \subset X$ open
the map of sets $\rho_V^U: \mathcal{F}(U) \to \mathcal{F}(V)$
is a morphism of algebraic structures.
\end{enumerate}
In other words, for every $V \subset U$ open in $X$
the restriction mappings $\rho^U_V$ is the image
$F(\alpha^U_V)$ for some unique morphism
$\alpha^U_V : A(U) \to A(V)$ in the category $\mathcal{C}$.
The uniqueness is forced by the condition that $F$ is
faithful; it also implies that
$\alpha^U_W = \alpha^V_W \circ \alpha^U_V$
whenever $W \subset V \subset U$ are open in $X$.
The system $(A(-), \alpha^U_V)$ is what we will define as a
presheaf with values in $\mathcal{C}$ on $X$, compare
Sites, Definition \ref{sites-definition-presheaf}.
We recover our presheaf of sets $(\mathcal{F}, \rho_V^U)$
via the rules $\mathcal{F}(U) = F(A(U))$ and
$\rho_V^U = F(\alpha_V^U)$.
\begin{definition}
\label{definition-presheaf-values-in-category}
Let $X$ be a topological space.
Let $\mathcal{C}$ be a category.
\begin{enumerate}
\item A {\it presheaf $\mathcal{F}$ on $X$ with values in $\mathcal{C}$}
is given by a rule which assigns to every open $U \subset X$
an object $\mathcal{F}(U)$ of $\mathcal{C}$
and to each inclusion $V \subset U$
a morphism $\rho_V^U : \mathcal{F}(U) \to \mathcal{F}(V)$
in $\mathcal{C}$ such that whenever $W \subset V \subset U$
we have $\rho_W^U = \rho_W^V \circ \rho_V^U$.
\item A {\it morphism $\varphi : \mathcal{F} \to \mathcal{G}$
of presheaves with value in $\mathcal{C}$} is given by a
morphism $\varphi : \mathcal{F}(U) \to \mathcal{G}(U)$
in $\mathcal{C}$ compatible with restriction morphisms.
\end{enumerate}
\end{definition}
\begin{definition}
\label{definition-underlying-presheaf-sets}
Let $X$ be a topological space. Let $\mathcal{C}$ be a category.
Let $F : \mathcal{C} \to \textit{Sets}$ be a faithful functor.
Let $\mathcal{F}$ be a presheaf on $X$ with values in $\mathcal{C}$.
The presheaf of sets $U \mapsto F(\mathcal{F}(U))$
is called the {\it underlying presheaf of sets of $\mathcal{F}$}.
\end{definition}
\noindent
It is customary to use the same letter $\mathcal{F}$ to denote
the underlying presheaf of sets, and this makes
sense according to our discussion preceding
Definition \ref{definition-presheaf-values-in-category}.
In particular, the phrase ``let $s \in \mathcal{F}(U)$''
or ``let $s$ be a section of $\mathcal{F}$ over $U$'' signifies
that $s \in F(\mathcal{F}(U))$.
\medskip\noindent
This notation and these definitions apply in particular to:
{\it Presheaves of (not necessarily abelian) groups, rings, modules
over a fixed ring, vector spaces over a fixed field, } etc and
{\it morphisms between these}.
\section{Presheaves of modules}
\label{section-presheaves-modules}
\noindent
Suppose that $\mathcal{O}$ is a presheaf of rings on $X$.
We would like to define the notion of a presheaf of
$\mathcal{O}$-modules over $X$. In analogy with Definition
\ref{definition-abelian-presheaves} we are tempted to define
this as a presheaf of sets $\mathcal{F}$ such that for every open
$U \subset X$ the set $\mathcal{F}(U)$ is endowed with the structure
of an $\mathcal{O}(U)$-module compatible with restriction mappings
(of $\mathcal{F}$ and $\mathcal{O}$). However, it is customary
(and equivalent) to define it as in the following definition.
\begin{definition}
\label{definition-presheaf-modules}
Let $X$ be a topological space, and let $\mathcal{O}$ be
a presheaf of rings on $X$.
\begin{enumerate}
\item A {\it presheaf of $\mathcal{O}$-modules}
is given by an abelian presheaf $\mathcal{F}$ together with a
map of presheaves of sets
$$
\mathcal{O} \times \mathcal{F} \longrightarrow \mathcal{F}
$$
such that for every open $U \subset X$ the map
$\mathcal{O}(U) \times \mathcal{F}(U) \to \mathcal{F}(U)$
defines the structure of an $\mathcal{O}(U)$-module
structure on the abelian group $\mathcal{F}(U)$.
\item A {\it morphism $\varphi : \mathcal{F} \to \mathcal{G}$
of presheaves of $\mathcal{O}$-modules} is a morphism of abelian presheaves
$\varphi : \mathcal{F} \to \mathcal{G}$ such that
the diagram
$$
\xymatrix{
\mathcal{O} \times \mathcal{F} \ar[r] \ar[d]_{\text{id} \times \varphi} &
\mathcal{F} \ar[d]^{\varphi} \\
\mathcal{O} \times \mathcal{G} \ar[r] &
\mathcal{G}
}
$$
commutes.
\item The set of $\mathcal{O}$-module morphisms as above is
denoted $\Hom_\mathcal{O}(\mathcal{F}, \mathcal{G})$.
\item The category of presheaves of $\mathcal{O}$-modules
is denoted $\textit{PMod}(\mathcal{O})$.
\end{enumerate}
\end{definition}
\noindent
Suppose that $\mathcal{O}_1 \to \mathcal{O}_2$ is a
morphism of presheaves of rings on $X$. In this case,
if $\mathcal{F}$ is a presheaf of $\mathcal{O}_2$-modules
then we can think of $\mathcal{F}$ as a presheaf of
$\mathcal{O}_1$-modules by using the composition
$$
\mathcal{O}_1 \times \mathcal{F}
\to
\mathcal{O}_2 \times \mathcal{F}
\to
\mathcal{F}.
$$
We sometimes denote this by $\mathcal{F}_{\mathcal{O}_1}$
to indicate the restriction of rings. We call this
the {\it restriction of $\mathcal{F}$}. We obtain the
restriction functor
$$
\textit{PMod}(\mathcal{O}_2)
\longrightarrow
\textit{PMod}(\mathcal{O}_1)
$$
\medskip\noindent
On the other hand, given a presheaf of $\mathcal{O}_1$-modules
$\mathcal{G}$
we can construct a presheaf of $\mathcal{O}_2$-modules
$\mathcal{O}_2 \otimes_{p, \mathcal{O}_1} \mathcal{G}$
by the rule
$$
\left(\mathcal{O}_2 \otimes_{p, \mathcal{O}_1} \mathcal{G}\right)(U)
=
\mathcal{O}_2(U) \otimes_{\mathcal{O}_1(U)} \mathcal{G}(U)
$$
The index $p$ stands for ``presheaf'' and not ``point''.
This presheaf is called the tensor product presheaf. We obtain
the {\it change of rings} functor
$$
\textit{PMod}(\mathcal{O}_1)
\longrightarrow
\textit{PMod}(\mathcal{O}_2)
$$
\begin{lemma}
\label{lemma-adjointness-tensor-restrict-presheaves}
With $X$, $\mathcal{O}_1$, $\mathcal{O}_2$, $\mathcal{F}$ and
$\mathcal{G}$ as above there exists a canonical bijection
$$
\Hom_{\mathcal{O}_1}(\mathcal{G}, \mathcal{F}_{\mathcal{O}_1})
=
\Hom_{\mathcal{O}_2}(
\mathcal{O}_2 \otimes_{p, \mathcal{O}_1} \mathcal{G},
\mathcal{F}
)
$$
In other words, the restriction and change of rings functors
are adjoint to each other.
\end{lemma}
\begin{proof}
This follows from the fact that for a ring map
$A \to B$ the restriction functor and the change
of ring functor are adjoint to each other.
\end{proof}
\section{Sheaves}
\label{section-sheaves}
\noindent
In this section we explain the sheaf condition.
\begin{definition}
\label{definition-sheaf}
Let $X$ be a topological space.
\begin{enumerate}
\item A {\it sheaf $\mathcal{F}$ of sets on $X$} is a presheaf
of sets which satisfies the following additional property: Given
any open covering $U = \bigcup_{i \in I} U_i$ and any collection
of sections $s_i \in \mathcal{F}(U_i)$, $i \in I$ such that
$\forall i, j\in I$
$$
s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}
$$
there exists a unique section $s \in \mathcal{F}(U)$ such that
$s_i = s|_{U_i}$ for all $i \in I$.
\item A {\it morphism of sheaves of sets} is simply a
morphism of presheaves of sets.
\item The category of sheaves of sets on $X$ is denoted
$\Sh(X)$.
\end{enumerate}
\end{definition}
\begin{remark}
\label{remark-confusion}
There is always a bit of confusion as to whether it is
necessary to say something about the set of sections of
a sheaf over the empty set $\emptyset \subset X$.
It is necessary, and we already did if you read the
definition right. Namely, note that the empty set is
covered by the empty open covering, and hence the ``collection
of sections $s_i$'' from the definition above actually form
an element of the empty product which is the final object
of the category the sheaf has values in. In other words,
if you read the definition right you automatically deduce
that $\mathcal{F}(\emptyset) = \textit{a final object}$,
which in the case of a sheaf of sets is a singleton.
If you do not like this argument, then you can just require
that $\mathcal{F}(\emptyset) = \{*\}$.
\medskip\noindent
In particular, this condition will then ensure that if
$U, V \subset X$ are open and {\it disjoint} then
$$
\mathcal{F}(U \cup V) = \mathcal{F}(U) \times \mathcal{F}(V).
$$
(Because the fibre product over a final object is a product.)
\end{remark}
\begin{example}
\label{example-basic-continuous-maps}
Let $X$, $Y$ be topological spaces.
Consider the rule $\mathcal{F}$ which associates to
the open $U \subset X$ the set
$$
\mathcal{F}(U) = \{ f : U \to Y \mid f \text{ is continuous}\}
$$
with the obvious restriction mappings. We claim that
$\mathcal{F}$ is a sheaf. To see this suppose that
$U = \bigcup_{i\in I} U_i$ is an open covering, and
$f_i \in \mathcal{F}(U_i)$, $i\in I$ with
$f_i |_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ for all $i, j \in I$.
In this case define $f : U \to Y$ by setting $f(u)$
equal to the value of $f_i(u)$ for any $i \in I$ such that
$u \in U_i$. This is well defined by assumption. Moreover,
$f : U \to Y$ is a map such that its restriction to $U_i$
agrees with the continuous map $f_i$. Hence clearly $f$ is
continuous!
\end{example}
\noindent
We can use the result of the example to define constant
sheaves. Namely, suppose that $A$ is a set. Endow $A$ with
the discrete topology. Let $U \subset X$ be an open subset.
Then we have
$$
\{ f : U \to A \mid f\text{ continuous}\}
=
\{ f : U \to A \mid f\text{ locally constant}\}.
$$
Thus the rule which assigns to an open all locally
constant maps into $A$ is a sheaf.
\begin{definition}
\label{definition-constant-sheaf}
Let $X$ be a topological space. Let $A$ be a set.
The {\it constant sheaf with value $A$} denoted $\underline{A}$, or
$\underline{A}_X$ is the sheaf that assigns to an open $U \subset X$
the set of all locally constant maps $U \to A$ with restriction mappings
given by restrictions of functions.
\end{definition}
\begin{example}
\label{example-sheaf-product-pointwise}
Let $X$ be a topological space. Let $(A_x)_{x \in X}$ be
a family of sets $A_x$ indexed by points $x \in X$. We are
going to construct a sheaf of sets $\Pi$ from this data.
For $U \subset X$ open set
$$
\Pi(U) = \prod\nolimits_{x \in U} A_x.
$$
For $V \subset U \subset X$ open define
a restriction mapping by the following rule: An element
$s = (a_x)_{x\in U} \in \Pi(U)$ restricts
to $s|_V = (a_x)_{x \in V}$. It is obvious that this
defines a presheaf of sets. We claim this is a sheaf.
Namely, let $U = \bigcup U_i$ be an open covering.
Suppose that $s_i \in \Pi(U_i)$ are
such that $s_i$ and $s_j$ agree over $U_i \cap U_j$. Write
$s_i = (a_{i, x})_{x\in U_i}$. The compatibility condition implies that
$a_{i, x} = a_{j, x}$ in the set $A_x$ whenever $x \in U_i \cap U_j$.
Hence there exists a unique element $s = (a_x)_{x\in U}$
in $\Pi(U) = \prod_{x\in U} A_x$ with the property that
$a_x = a_{i, x}$ whenever $x \in U_i$ for some $i$. Of course this
element $s$ has the property that $s|_{U_i} = s_i$ for all $i$.
\end{example}
\begin{example}
\label{example-direct-sum-points-not-sheaf}
Let $X$ be a topological space.
Suppose for each $x\in X$ we are given an abelian group $M_x$.
Consider the presheaf $\mathcal{F} : U \mapsto \bigoplus_{x \in U} M_x$
defined in Example \ref{example-direct-sum-points}. This
is not a sheaf in general. For example, if $X$ is an infinite set
with the discrete topology, then the sheaf condition
would imply that $\mathcal{F}(X) = \prod_{x\in X} \mathcal{F}(\{x\})$
but by definition we have $\mathcal{F}(X)
= \bigoplus_{x \in X} M_x = \bigoplus_{x \in X} \mathcal{F}(\{x\})$.
And an infinite direct sum is in general different from an infinite
direct product.
\medskip\noindent
However, if $X$ is a topological space such that every open
of $X$ is quasi-compact, then $\mathcal{F}$ {\it is} a sheaf.
This is left as an exercise to the reader.
\end{example}
\section{Abelian sheaves}
\label{section-abelian-sheaves}
\begin{definition}
\label{definition-abelian-sheaf}
Let $X$ be a topological space.
\begin{enumerate}
\item An {\it abelian sheaf on $X$} or
{\it sheaf of abelian groups on $X$}
is an abelian presheaf on $X$ such that the underlying presheaf of
sets is a sheaf.
\item The category of sheaves of abelian groups
is denoted $\textit{Ab}(X)$.
\end{enumerate}
\end{definition}
\noindent
Let $X$ be a topological space.
In the case of an abelian presheaf $\mathcal{F}$ the sheaf
condition with regards to an open covering $U = \bigcup U_i$
is often expressed by saying that the complex of abelian groups
$$
0 \to \mathcal{F}(U)
\to \prod\nolimits_i \mathcal{F}(U_i)
\to \prod\nolimits_{(i_0, i_1)} \mathcal{F}(U_{i_0} \cap U_{i_1})
$$
is exact. The first map is the usual one, whereas the second
maps the element $(s_i)_{i \in I}$ to the element
$$
(
s_{i_0}|_{U_{i_0} \cap U_{i_1}} -
s_{i_1}|_{U_{i_0} \cap U_{i_1}}
)_{(i_0, i_1)}
\in \prod\nolimits_{(i_0, i_1)} \mathcal{F}(U_{i_0} \cap U_{i_1})
$$
\section{Sheaves of algebraic structures}
\label{section-sheaves-structures}
\noindent
Let us clarify the definition of sheaves of certain types of structures.
First, let us reformulate the sheaf condition. Namely, suppose that
$\mathcal{F}$ is a presheaf of sets on the topological space $X$.
The sheaf condition can be reformulated as follows. Let
$U = \bigcup_{i\in I} U_i$ be an open covering. Consider the
diagram
$$
\xymatrix{
\mathcal{F}(U) \ar[r]
&
\prod\nolimits_{i\in I}
\mathcal{F}(U_i)
\ar@<1ex>[r] \ar@<-1ex>[r]
&
\prod\nolimits_{(i_0, i_1) \in I \times I}
\mathcal{F}(U_{i_0} \cap U_{i_1})
}
$$
Here the left map is defined by the rule
$s \mapsto \prod_{i \in I} s|_{U_i}$. The two maps
on the right are the maps
$$
\prod\nolimits_i s_i
\mapsto
\prod\nolimits_{(i_0, i_1)} s_{i_0}|_{U_{i_0} \cap U_{i_1}}
\text{ resp. }
\prod\nolimits_i s_i
\mapsto
\prod\nolimits_{(i_0, i_1)} s_{i_1}|_{U_{i_0} \cap U_{i_1}}.
$$
The sheaf condition exactly says that the left arrow
is the equalizer of the right two. This generalizes
immediately to the case of presheaves with values in a
category as long as the category has products.
\begin{definition}
\label{definition-sheaf-values-in-category}
Let $X$ be a topological space. Let $\mathcal{C}$ be
a category with products. A presheaf $\mathcal{F}$ with
values in $\mathcal{C}$ on $X$ is a {\it sheaf}
if for every open covering the diagram
$$
\xymatrix{
\mathcal{F}(U) \ar[r]
&
\prod\nolimits_{i\in I}
\mathcal{F}(U_i)
\ar@<1ex>[r] \ar@<-1ex>[r]
&
\prod\nolimits_{(i_0, i_1) \in I \times I}
\mathcal{F}(U_{i_0} \cap U_{i_1})
}
$$
is an equalizer diagram in the category $\mathcal{C}$.
\end{definition}
\noindent
Suppose that $\mathcal{C}$ is a category and that
$F : \mathcal{C} \to \textit{Sets}$ is a faithful functor.
A good example to keep in mind is the case where $\mathcal{C}$
is the category of abelian groups and $F$ is the forgetful functor.
Consider a presheaf $\mathcal{F}$ with values in $\mathcal{C}$ on $X$.
We would like to reformulate the condition above in terms
of the underlying presheaf of sets
(Definition \ref{definition-underlying-presheaf-sets}).
Note that the underlying
presheaf of sets is a sheaf of sets if and only if all the
diagrams
$$
\xymatrix{
F(\mathcal{F}(U)) \ar[r]
&
\prod\nolimits_{i\in I}
F(\mathcal{F}(U_i))
\ar@<1ex>[r] \ar@<-1ex>[r]
&
\prod\nolimits_{(i_0, i_1) \in I \times I}
F(\mathcal{F}(U_{i_0} \cap U_{i_1}))
}
$$
of sets -- after applying the forgetful functor $F$ -- are
equalizer diagrams! Thus we would like $\mathcal{C}$ to have
products and equalizers and we would like $F$ to commute with
them. This is equivalent to the condition that $\mathcal{C}$
has limits and that $F$ commutes with them, see
Categories, Lemma \ref{categories-lemma-limits-products-equalizers}.
But this is not yet good enough
(see Example \ref{example-sheaves-topological-spaces});
we also need $F$ to {\it reflect isomorphisms}.
This property means that given a morphism
$f : A \to A'$ in $\mathcal{C}$, then $f$ is
an isomorphism if (and only if) $F(f)$ is a bijection.
\begin{lemma}
\label{lemma-sheaves-structure}
Suppose the category $\mathcal{C}$ and
the functor $F : \mathcal{C} \to \textit{Sets}$
have the following properties:
\begin{enumerate}
\item $F$ is faithful,
\item $\mathcal{C}$ has limits and $F$ commutes with them, and
\item the functor $F$ reflects isomorphisms.
\end{enumerate}
Let $X$ be a topological space. Let $\mathcal{F}$
be a presheaf with values in $\mathcal{C}$.
Then $\mathcal{F}$ is a sheaf if and only if the
underlying presheaf of sets is a sheaf.
\end{lemma}
\begin{proof}
Assume that $\mathcal{F}$ is a sheaf. Then
$\mathcal{F}(U)$ is the equalizer of the diagram
above and by assumption we see $F(\mathcal{F}(U))$
is the equalizer of the corresponding diagram
of sets. Hence $F(\mathcal{F})$ is a sheaf of sets.
\medskip\noindent
Assume that $F(\mathcal{F})$ is a sheaf.
Let $E \in \Ob(\mathcal{C})$ be the
equalizer of the two parallel arrows in
Definition \ref{definition-sheaf-values-in-category}.
We get a canonical morphism $\mathcal{F}(U) \to E$,
simply because $\mathcal{F}$ is a presheaf.
By assumption, the induced map $F(\mathcal{F}(U)) \to F(E)$
is an isomorphism, because $F(E)$ is the equalizer
of the corresponding diagram of sets. Hence we
see $\mathcal{F}(U) \to E$ is an isomorphism
by condition (3) of the lemma.
\end{proof}
\noindent
The lemma in particular applies to
{\it sheaves of groups, rings, algebras over a fixed ring, modules
over a fixed ring, vector spaces over a fixed field, } etc.
In other words, these are presheaves of groups, rings,
modules over a fixed ring, vector spaces over a fixed field, etc
such that the underlying presheaf of sets is a sheaf.
\begin{example}
\label{example-C0-sheaf-rings}
Let $X$ be a topological space. For each open $U \subset X$ consider
the $\mathbf{R}$-algebra
$\mathcal{C}^{0}(U) = \{ f : U \to \mathbf{R} \mid f\text{ is continuous}\}$.
There are obvious restriction mappings that turn this into a
presheaf of $\mathbf{R}$-algebras over $X$.
By Example \ref{example-basic-continuous-maps} it is a sheaf of sets.
Hence by the Lemma \ref{lemma-sheaves-structure} it is a sheaf of
$\mathbf{R}$-algebras over $X$.
\end{example}
\begin{example}
\label{example-sheaves-topological-spaces}
Consider the category of topological spaces $\textit{Top}$.
There is a natural faithful functor $\textit{Top} \to \textit{Sets}$
which commutes with products and equalizers. But it does
not reflect isomorphisms. And, in fact it turns out that
the analogue of Lemma \ref{lemma-sheaves-structure} is wrong.
Namely, suppose $X = \mathbf{N}$ with the discrete
topology. Let $A_i$, for $i \in \mathbf{N}$ be a discrete
topological space. For any subset $U \subset \mathbf{N}$
define $\mathcal{F}(U) = \prod_{i\in U} A_i$ with the
discrete topology. Then this is a presheaf of topological
spaces whose underlying presheaf of sets is a sheaf, see
Example \ref{example-sheaf-product-pointwise}.
However, if each $A_i$ has at least two elements, then
this is not a sheaf of topological spaces
according to Definition \ref{definition-sheaf-values-in-category}.
The reader may check that putting the {\it product topology} on
each $\mathcal{F}(U) = \prod_{i\in U} A_i$ does lead to a sheaf
of topological spaces over $X$.
\end{example}
\section{Sheaves of modules}
\label{section-sheaves-modules}
\begin{definition}
\label{definition-sheaf-modules}
Let $X$ be a topological space.
Let $\mathcal{O}$ be a sheaf of rings on $X$.
\begin{enumerate}
\item A {\it sheaf of $\mathcal{O}$-modules} is a presheaf
of $\mathcal{O}$-modules $\mathcal{F}$,
see Definition \ref{definition-presheaf-modules},
such that the underlying presheaf of abelian groups $\mathcal{F}$
is a sheaf.
\item A {\it morphism of sheaves of $\mathcal{O}$-modules}
is a morphism of presheaves of $\mathcal{O}$-modules.
\item Given sheaves of $\mathcal{O}$-modules
$\mathcal{F}$ and $\mathcal{G}$ we denote
$\Hom_\mathcal{O}(\mathcal{F}, \mathcal{G})$
the set of morphism of sheaves of $\mathcal{O}$-modules.
\item The category of sheaves of $\mathcal{O}$-modules
is denoted $\textit{Mod}(\mathcal{O})$.
\end{enumerate}
\end{definition}
\noindent
This definition kind of makes sense even if $\mathcal{O}$ is just a
presheaf of rings, although we do not know any examples where
this is useful, and we will avoid using the terminology
``sheaves of $\mathcal{O}$-modules''
in case $\mathcal{O}$ is not a sheaf of rings.
\section{Stalks}
\label{section-stalks}
\noindent
Let $X$ be a topological space. Let $x \in X$ be a point.
Let $\mathcal{F}$ be a presheaf of sets on $X$.
The {\it stalk of $\mathcal{F}$ at $x$} is the set
$$
\mathcal{F}_x
=
\colim_{x\in U} \mathcal{F}(U)
$$
where the colimit is over the set of open neighbourhoods
$U$ of $x$ in $X$. The set of open neighbourhoods is
partially ordered by (reverse) inclusion:
We say $U \geq U' \Leftrightarrow U \subset U'$.
The transition maps in the system are
given by the restriction maps of $\mathcal{F}$.
See Categories, Section \ref{categories-section-posets-limits}
for notation and terminology regarding (co)limits over systems.
Note that the colimit is a directed colimit.
Thus it is easy to describe $\mathcal{F}_x$. Namely,
$$
\mathcal{F}_x
=
\{
(U, s)
\mid
x\in U, s\in \mathcal{F}(U)
\}/\sim
$$
with equivalence relation given by $(U, s) \sim (U', s')$ if and only if
there exists an open $U'' \subset U \cap U'$ with $x \in U''$ and
$s|_{U''} = s'|_{U''}$. Given a pair $(U, s)$ we sometimes denote
$s_x$ the element of $\mathcal{F}_x$ corresponding to the equivalence
class of $(U, x)$. We sometimes use the phrase
``image of $s$ in $\mathcal{F}_x$'' to denote $s_x$.
For example, given two pairs $(U, s)$ and $(U', s')$ we sometimes
say ``$s$ is equal to $s'$ in $\mathcal{F}_x$'' to indicate
that $s_x = s'_x$. Other authors use the terminology
``germ of $s$ at $x$''.
\medskip\noindent
An obvious consequence of this definition is that
for any open $U \subset X$ there is a canonical map
$$
\mathcal{F}(U)
\longrightarrow
\prod\nolimits_{x \in U} \mathcal{F}_x
$$
defined by $s \mapsto \prod_{x \in U} (U, s)$. Think about it!
\begin{lemma}
\label{lemma-sheaf-subset-stalks}
Let $\mathcal{F}$ be a sheaf of sets on the topological space $X$.
For every open $U \subset X$ the map
$$
\mathcal{F}(U)
\longrightarrow
\prod\nolimits_{x \in U} \mathcal{F}_x
$$
is injective.
\end{lemma}
\begin{proof}
Suppose that $s, s' \in \mathcal{F}(U)$ map to the same element
in every stalk $\mathcal{F}_x$ for all $x \in U$. This means that
for every $x \in U$, there exists an open $V^x \subset U$,
$x \in V^x$ such that $s|_{V^x} = s'|_{V^x}$. But then
$U = \bigcup_{x \in U} V^x$ is an open covering. Thus by the
uniqueness in the sheaf condition we see that $s = s'$.
\end{proof}
\begin{definition}
\label{definition-separated}
Let $X$ be a topological space.
A presheaf of sets $\mathcal{F}$ on $X$ is {\it separated}
if for every open $U \subset X$ the map
$\mathcal{F}(U) \to \prod_{x \in U} \mathcal{F}_x$ is
injective.
\end{definition}
\noindent
Another observation is that the construction of the stalk
$\mathcal{F}_x$ is functorial in the presheaf $\mathcal{F}$.
In other words, it gives a functor
$$
\textit{PSh}(X) \longrightarrow \textit{Sets},
\ \mathcal{F} \longmapsto \mathcal{F}_x.
$$
This functor is called the {\it stalk functor}.
Namely, if $\varphi : \mathcal{F} \to \mathcal{G}$ is
a morphism of presheaves, then we define
$\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$
by the rule $(U, s) \mapsto (U, \varphi(s))$.
To see that this works we have to check that
if $(U, s) = (U', s')$ in $\mathcal{F}_x$ then also
$(U, \varphi(s)) = (U', \varphi(s'))$ in $\mathcal{G}_x$.
This is clear since $\varphi$ is compatible with the
restriction mappings.
\begin{example}
\label{example-stalk-constant-presheaf}
Let $X$ be a topological space. Let $A$ be a set.
Denote temporarily $A_p$ the constant presheaf
with value $A$ ($p$ for presheaf -- not for point).
There is a canonical map of presheaves
$A_p \to \underline{A}$ into the constant sheaf with