-
Notifications
You must be signed in to change notification settings - Fork 152
/
more-morphisms.tex
23505 lines (21299 loc) · 893 KB
/
more-morphisms.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{More on Morphisms}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we continue our study of properties of morphisms of schemes.
A fundamental reference is \cite{EGA}.
\section{Thickenings}
\label{section-thickenings}
\noindent
The following terminology may not be completely standard, but it is convenient.
\begin{definition}
\label{definition-thickening}
Thickenings.
\begin{enumerate}
\item We say a scheme $X'$ is a {\it thickening} of a scheme $X$ if
$X$ is a closed subscheme of $X'$ and the underlying topological spaces
are equal.
\item We say a scheme $X'$ is a {\it first order thickening} of a scheme $X$ if
$X$ is a closed subscheme of $X'$ and the quasi-coherent sheaf of ideals
$\mathcal{I} \subset \mathcal{O}_{X'}$ defining $X$ has square zero.
\item Given two thickenings $X \subset X'$ and $Y \subset Y'$ a
{\it morphism of thickenings} is a morphism $f' : X' \to Y'$ such that
$f'(X) \subset Y$, i.e., such that $f'|_X$ factors through the closed
subscheme $Y$. In this situation we set $f = f'|_X : X \to Y$ and we say
that $(f, f') : (X \subset X') \to (Y \subset Y')$ is a morphism of
thickenings.
\item Let $S$ be a scheme. We similarly define {\it thickenings over $S$}, and
{\it morphisms of thickenings over $S$}. This means that the schemes
$X, X', Y, Y'$ above are schemes over $S$, and that the morphisms
$X \to X'$, $Y \to Y'$ and $f' : X' \to Y'$ are morphisms over $S$.
\end{enumerate}
\end{definition}
\noindent
Finite order thickenings. Let $i_X : X \to X'$ be a thickening.
Any local section of the kernel
$\mathcal{I} = \Ker(i_X^\sharp)$ is locally nilpotent.
Let us say that $X \subset X'$ is a {\it finite order thickening}
if the ideal sheaf $\mathcal{I}$ is ``globally'' nilpotent, i.e.,
if there exists an $n \geq 0$ such that $\mathcal{I}^{n + 1} = 0$.
Technically the class of finite order thickenings $X \subset X'$
is much easier to handle than the general case.
Namely, in this case we have a filtration
$$
0 = \mathcal{I}^{n + 1} \subset
\mathcal{I}^n \subset
\mathcal{I}^{n - 1} \subset \ldots \subset
\mathcal{I} \subset \mathcal{O}_{X'}
$$
and we see that $X'$ is filtered by closed subspaces
$$
X = X_1 \subset X_2 \subset \ldots \subset X_n \subset X_{n + 1} = X'
$$
such that each pair $X_i \subset X_{i + 1}$ is a first order thickening
over $S$. Using simple induction arguments many results proved for first order
thickenings can be rephrased as results on finite order thickenings.
\medskip\noindent
First order thickening are described as follows (see
Modules, Lemma \ref{modules-lemma-double-structure-gives-derivation}).
\begin{lemma}
\label{lemma-first-order-thickening}
Let $X$ be a scheme over a base $S$. Consider a short exact sequence
$$
0 \to \mathcal{I} \to \mathcal{A} \to \mathcal{O}_X \to 0
$$
of sheaves on $X$ where $\mathcal{A}$ is a sheaf of
$f^{-1}\mathcal{O}_S$-algebras,
$\mathcal{A} \to \mathcal{O}_X$ is a surjection
of sheaves of $f^{-1}\mathcal{O}_S$-algebras, and $\mathcal{I}$ is its kernel.
If
\begin{enumerate}
\item $\mathcal{I}$ is an ideal of square zero in $\mathcal{A}$, and
\item $\mathcal{I}$ is quasi-coherent as an $\mathcal{O}_X$-module
\end{enumerate}
then $X' = (X, \mathcal{A})$ is a scheme and $X \to X'$ is a first
order thickening over $S$. Moreover, any first order thickening over
$S$ is of this form.
\end{lemma}
\begin{proof}
It is clear that $X'$ is a locally ringed space. Let $U = \Spec(B)$
be an affine open of $X$. Set $A = \Gamma(U, \mathcal{A})$. Note that
since $H^1(U, \mathcal{I}) = 0$ (see Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-coherent-affine-cohomology-zero})
the map $A \to B$ is surjective. By assumption the kernel
$I = \mathcal{I}(U)$ is an ideal of square zero in the ring $A$.
By
Schemes, Lemma \ref{schemes-lemma-morphism-into-affine}
there is a canonical morphism of locally ringed spaces
$$
(U, \mathcal{A}|_U) \longrightarrow \Spec(A)
$$
coming from the map $B \to \Gamma(U, \mathcal{A})$. Since this morphism
fits into the commutative diagram
$$
\xymatrix{
(U, \mathcal{O}_X|_U) \ar[d] \ar[r] & \Spec(B) \ar[d] \\
(U, \mathcal{A}|_U) \ar[r] & \Spec(A)
}
$$
we see that it is a homeomorphism on underlying topological spaces.
Thus to see that it is an isomorphism, it suffices to check it induces
an isomorphism on the local rings.
For $u \in U$ corresponding to the prime $\mathfrak p \subset A$
we obtain a commutative diagram of short exact sequences
$$
\xymatrix{
0 \ar[r] &
I_{\mathfrak p} \ar[r] \ar[d] &
A_{\mathfrak p} \ar[r] \ar[d] &
B_{\mathfrak p} \ar[r] \ar[d] & 0 \\
0 \ar[r] &
\mathcal{I}_u \ar[r] &
\mathcal{A}_u \ar[r] &
\mathcal{O}_{X, u} \ar[r] & 0.
}
$$
The left and right vertical arrows are isomorphisms because
$\mathcal{I}$ and $\mathcal{O}_X$ are quasi-coherent sheaves.
Hence also the middle map is an isomorphism. Hence every point
of $X' = (X, \mathcal{A})$ has an affine neighbourhood and $X'$ is a
scheme as desired.
\end{proof}
\begin{lemma}
\label{lemma-thickening-affine-scheme}
\begin{slogan}
Affineness is insensitive to thickenings
\end{slogan}
\begin{reference}
The case of a finite order thickening is \cite[Proposition 5.1.9]{EGA1}.
\end{reference}
Any thickening of an affine scheme is affine.
\end{lemma}
\begin{proof}
This is a special case of
Limits, Proposition \ref{limits-proposition-affine}.
\end{proof}
\begin{proof}[Proof for a finite order thickening]
Suppose that $X \subset X'$ is a finite order thickening with $X$ affine. Then
we may use Serre's criterion to prove $X'$ is affine. More precisely, we will
use Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-compact-h1-zero-covering}. Let $\mathcal{F}$ be a
quasi-coherent $\mathcal{O}_{X'}$-module. It suffices to show that
$H^1(X', \mathcal{F}) = 0$. Denote $i : X \to X'$ the given closed immersion
and denote
$\mathcal{I} = \Ker(i^\sharp : \mathcal{O}_{X'} \to i_*\mathcal{O}_X)$.
By our discussion of finite order thickenings (following
Definition \ref{definition-thickening}) there exists an $n \geq 0$
and a filtration
$$
0 = \mathcal{F}_{n + 1} \subset \mathcal{F}_n \subset
\mathcal{F}_{n - 1} \subset \ldots \subset
\mathcal{F}_0 = \mathcal{F}
$$
by quasi-coherent submodules such that $\mathcal{F}_a/\mathcal{F}_{a + 1}$ is
annihilated by $\mathcal{I}$. Namely, we can take
$\mathcal{F}_a = \mathcal{I}^a\mathcal{F}$. Then
$\mathcal{F}_a/\mathcal{F}_{a + 1} = i_*\mathcal{G}_a$ for some quasi-coherent
$\mathcal{O}_X$-module $\mathcal{G}_a$, see Morphisms, Lemma
\ref{morphisms-lemma-i-star-equivalence}. We obtain
$$
H^1(X', \mathcal{F}_a/\mathcal{F}_{a + 1}) =
H^1(X', i_*\mathcal{G}_a) = H^1(X, \mathcal{G}_a) = 0
$$
The second equality comes from Cohomology of Schemes, Lemma
\ref{coherent-lemma-relative-affine-cohomology}
and the last equality from Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-coherent-affine-cohomology-zero}.
Thus $\mathcal{F}$ has a finite filtration whose successive quotients
have vanishing first cohomology and it follows by a simple
induction argument that $H^1(X', \mathcal{F}) = 0$.
\end{proof}
\begin{lemma}
\label{lemma-base-change-thickening}
Let $S \subset S'$ be a thickening of schemes. Let $X' \to S'$ be a morphism
and set $X = S \times_{S'} X'$. Then $(X \subset X') \to (S \subset S')$
is a morphism of thickenings. If $S \subset S'$ is a first
(resp.\ finite order) thickening, then $X \subset X'$ is a first
(resp.\ finite order) thickening.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-composition-thickening}
\begin{slogan}
Compositions of thickenings are thickenings
\end{slogan}
If $S \subset S'$ and $S' \subset S''$ are thickenings, then so is
$S \subset S''$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-descending-property-thickening}
The property of being a thickening is fpqc local.
Similarly for first order thickenings.
\end{lemma}
\begin{proof}
The statement means the following: Let $X \to X'$ be a morphism
of schemes and let $\{g_i : X'_i \to X'\}$
be an fpqc covering such that the base change $X_i \to X'_i$
is a thickening for all $i$. Then $X \to X'$ is a thickening.
Since the morphisms $g_i$ are jointly surjective we conclude
that $X \to X'$ is surjective. By
Descent, Lemma \ref{descent-lemma-descending-property-closed-immersion}
we conclude that $X \to X'$ is a closed immersion.
Thus $X \to X'$ is a thickening. We omit the proof in the
case of first order thickenings.
\end{proof}
\section{Morphisms of thickenings}
\label{section-morphisms-thickenings}
\noindent
If $(f, f') : (X \subset X') \to (Y \subset Y')$ is a morphism
of thickenings of schemes, then often properties of the morphism
$f$ are inherited by $f'$. There are several variants.
\begin{lemma}
\label{lemma-thicken-property-morphisms}
Let $(f, f') : (X \subset X') \to (S \subset S')$ be a morphism
of thickenings. Then
\begin{enumerate}
\item $f$ is an affine morphism if and only if $f'$ is an affine morphism,
\item $f$ is a surjective morphism if and only if $f'$ is a surjective morphism,
\item $f$ is quasi-compact if and only if $f'$ quasi-compact,
\item $f$ is universally closed if and only if $f'$ is universally closed,
\item $f$ is integral if and only if $f'$ is integral,
\item $f$ is (quasi-)separated if and only if $f'$ is (quasi-)separated,
\item $f$ is universally injective if and only if $f'$ is universally injective,
\item $f$ is universally open if and only if $f'$ is universally open,
\item $f$ is quasi-affine if and only if $f'$ is quasi-affine, and
\item add more here.
\end{enumerate}
\end{lemma}
\begin{proof}
Observe that $S \to S'$ and $X \to X'$ are universal homeomorphisms
(see for example
Morphisms, Lemma \ref{morphisms-lemma-reduction-universal-homeomorphism}).
This immediately implies parts (2), (3), (4), (7), and (8).
Part (1) follows from Lemma \ref{lemma-thickening-affine-scheme}
which tells us that there is a 1-to-1 correspondence between
affine opens of $S$ and $S'$ and between affine opens of $X$ and $X'$.
Part (9) follows from
Limits, Lemma \ref{limits-lemma-thickening-quasi-affine}
and the remark just made about affine opens of $S$ and $S'$.
Part (5) follows from (1) and (4) by
Morphisms, Lemma \ref{morphisms-lemma-integral-universally-closed}.
Finally, note that
$$
S \times_X S = S \times_{X'} S \to S \times_{X'} S' \to S' \times_{X'} S'
$$
is a thickening (the two arrows are thickenings by
Lemma \ref{lemma-base-change-thickening}).
Hence applying (3) and (4) to the morphism
$(S \subset S') \to (S \times_X S \to S' \times_{X'} S')$
we obtain (6).
\end{proof}
\begin{lemma}
\label{lemma-thicken-property-relatively-ample}
Let $(f, f') : (X \subset X') \to (S \subset S')$ be a morphism
of thickenings. Let $\mathcal{L}'$ be an invertible sheaf on $X'$
and denote $\mathcal{L}$ the restriction to $X$.
Then $\mathcal{L}'$ is $f'$-ample if and only if
$\mathcal{L}$ is $f$-ample.
\end{lemma}
\begin{proof}
Recall that being relatively ample is a condition for each
affine open in the base, see
Morphisms, Definition \ref{morphisms-definition-relatively-ample}.
By Lemma \ref{lemma-thickening-affine-scheme}
there is a 1-to-1 correspondence between
affine opens of $S$ and $S'$.
Thus we may assume $S$ and $S'$ are affine
and we reduce to proving that
$\mathcal{L}'$ is ample if and only if
$\mathcal{L}$ is ample.
This is Limits, Lemma \ref{limits-lemma-ample-on-reduction}.
\end{proof}
\begin{lemma}
\label{lemma-thicken-property-morphisms-cartesian}
Let $(f, f') : (X \subset X') \to (S \subset S')$ be a morphism
of thickenings such that $X = S \times_{S'} X'$. If $S \subset S'$
is a finite order thickening, then
\begin{enumerate}
\item $f$ is a closed immersion if and only if $f'$ is a closed immersion,
\item $f$ is locally of finite type if and only if $f'$ is
locally of finite type,
\item $f$ is locally quasi-finite if and only if $f'$ is locally
quasi-finite,
\item $f$ is locally of finite type of relative dimension $d$ if and
only if $f'$ is locally of finite type of relative dimension $d$,
\item $\Omega_{X/S} = 0$ if and only if $\Omega_{X'/S'} = 0$,
\item $f$ is unramified if and only if $f'$ is unramified,
\item $f$ is proper if and only if $f'$ is proper,
\item $f$ is finite if and only if $f'$ is finite,
\item $f$ is a monomorphism if and only if $f'$ is a monomorphism,
\item $f$ is an immersion if and only if $f'$ is an immersion, and
\item add more here.
\end{enumerate}
\end{lemma}
\begin{proof}
The properties $\mathcal{P}$ listed in the lemma are all stable
under base change, hence if $f'$ has property $\mathcal{P}$, then so
does $f$. See
Schemes, Lemmas \ref{schemes-lemma-base-change-immersion} and
\ref{schemes-lemma-base-change-monomorphism}
and
Morphisms, Lemmas
\ref{morphisms-lemma-base-change-finite-type},
\ref{morphisms-lemma-base-change-quasi-finite},
\ref{morphisms-lemma-base-change-relative-dimension-d},
\ref{morphisms-lemma-base-change-differentials},
\ref{morphisms-lemma-base-change-unramified},
\ref{morphisms-lemma-base-change-proper}, and
\ref{morphisms-lemma-base-change-finite}.
\medskip\noindent
The interesting direction in each case is therefore to assume
that $f$ has the property and deduce that $f'$ has it too.
By induction on the order of the thickening we may
assume that $S \subset S'$ is a first order thickening, see
discussion immediately following
Definition \ref{definition-thickening}.
\medskip\noindent
Most of the proofs will use a reduction to the affine case. Let
$U' \subset S'$ be an affine open and let $V' \subset X'$ be an affine open
lying over $U'$. Let $U' = \Spec(A')$ and denote $I \subset A'$ be the ideal
defining the closed subscheme $U' \cap S$. Say $V' = \Spec(B')$.
Then $V' \cap X = \Spec(B'/IB')$. Setting $A = A'/I$ and
$B = B'/IB'$ we get a commutative diagram
$$
\xymatrix{
0 \ar[r] &
IB' \ar[r] &
B' \ar[r] &
B \ar[r] & 0 \\
0 \ar[r] &
IA' \ar[r] \ar[u] &
A' \ar[r] \ar[u] &
A \ar[r] \ar[u] & 0
}
$$
with exact rows and $I^2 = 0$.
\medskip\noindent
The translation of (1) into algebra: If $A \to B$ is surjective,
then $A' \to B'$ is surjective. This follows from
Nakayama's lemma (Algebra, Lemma \ref{algebra-lemma-NAK}).
\medskip\noindent
The translation of (2) into algebra: If $A \to B$ is a finite type ring
map, then $A' \to B'$ is a finite type ring map. This follows from
Nakayama's lemma (Algebra, Lemma \ref{algebra-lemma-NAK})
applied to a map $A'[x_1, \ldots, x_n] \to B'$ such that
$A[x_1, \ldots, x_n] \to B$ is surjective.
\medskip\noindent
Proof of (3). Follows from (2) and that quasi-finiteness of a morphism
which is locally of finite type can be checked on fibres, see
Morphisms, Lemma \ref{morphisms-lemma-quasi-finite-at-point-characterize}.
\medskip\noindent
Proof of (4). Follows from (2) and that the additional property of ``being of
relative dimension $d$'' can be checked on fibres (by definition, see
Morphisms, Definition \ref{morphisms-definition-relative-dimension-d}.
\medskip\noindent
The translation of (5) into algebra: If $\Omega_{B/A} = 0$, then
$\Omega_{B'/A'} = 0$. By
Algebra, Lemma \ref{algebra-lemma-differentials-base-change}
we have $0 = \Omega_{B/A} = \Omega_{B'/A'}/I\Omega_{B'/A'}$.
Hence $\Omega_{B'/A'} = 0$ by
Nakayama's lemma (Algebra, Lemma \ref{algebra-lemma-NAK}).
\medskip\noindent
The translation of (6) into algebra: If $A \to B$ is unramified
map, then $A' \to B'$ is unramified. Since $A \to B$ is of finite
type we see that $A' \to B'$ is of finite type by (2) above.
Since $A \to B$ is unramified we have $\Omega_{B/A} = 0$. By
part (5) we have $\Omega_{B'/A'} = 0$. Thus $A' \to B'$ is unramified.
\medskip\noindent
Proof of (7). Follows by combining (2) with
results of Lemma \ref{lemma-thicken-property-morphisms}
and the fact that proper equals quasi-compact $+$
separated $+$ locally of finite type $+$ universally closed.
\medskip\noindent
Proof of (8). Follows by combining (2) with
results of Lemma \ref{lemma-thicken-property-morphisms}
and using the fact that finite equals integral $+$ locally
of finite type (Morphisms, Lemma \ref{morphisms-lemma-finite-integral}).
\medskip\noindent
Proof of (9). As $f$ is a monomorphism we have $X = X \times_S X$.
We may apply the results proved so far to the morphism of thickenings
$(X \subset X') \to (X \times_S X \subset X' \times_{S'} X')$.
We conclude $X' \to X' \times_{S'} X'$ is a closed immersion by (1).
In fact, it is a first order thickening as the ideal defining the
closed immersion
$X' \to X' \times_{S'} X'$ is contained in the pullback of the ideal
$\mathcal{I} \subset \mathcal{O}_{S'}$ cutting out $S$ in $S'$.
Indeed, $X = X \times_S X = (X' \times_{S'} X') \times_{S'} S$
is contained in $X'$. Hence by
Morphisms, Lemma \ref{morphisms-lemma-differentials-diagonal}
it suffices to show that
$\Omega_{X'/S'} = 0$ which follows from (5)
and the corresponding statement for $X/S$.
\medskip\noindent
Proof of (10). If $f : X \to S$ is an immersion, then it factors as
$X \to U \to S$ where $U \to S$ is an open immersion and $X \to U$ is a
closed immersion. Let $U' \subset S'$ be the open subscheme whose
underlying topological space is the same as $U$. Then $X' \to S'$
factors through $U'$ and we conclude that $X' \to U'$ is a closed
immersion by part (1). This finishes the proof.
\end{proof}
\noindent
The following lemma is a variant on the preceding one. Rather than assume
that the thickenings involved are finite order (which allows us to transfer
the property of being locally of finite type from $f$ to $f'$),
we instead take as given that each of $f$ and $f'$ is locally of
finite type.
\begin{lemma}
\label{lemma-properties-that-extend-over-thickenings}
Let $(f, f') : (X \subset X') \to (Y \to Y')$ be a morphism
of thickenings. Assume $f$ and $f'$ are locally of finite type
and $X = Y \times_{Y'} X'$. Then
\begin{enumerate}
\item $f$ is locally quasi-finite if and only if $f'$ is locally quasi-finite,
\item $f$ is finite if and only if $f'$ is finite,
\item $f$ is a closed immersion if and only if $f'$ is a closed immersion,
\item $\Omega_{X/Y} = 0$ if and only if $\Omega_{X'/Y'} = 0$,
\item $f$ is unramified if and only if $f'$ is unramified,
\item $f$ is a monomorphism if and only if $f'$ is a monomorphism,
\item $f$ is an immersion if and only if $f'$ is an immersion,
\item $f$ is proper if and only if $f'$ is proper, and
\item add more here.
\end{enumerate}
\end{lemma}
\begin{proof}
The properties $\mathcal{P}$ listed in the lemma are all stable
under base change, hence if $f'$ has property $\mathcal{P}$, then so
does $f$. See
Schemes, Lemmas \ref{schemes-lemma-base-change-immersion} and
\ref{schemes-lemma-base-change-monomorphism}
and
Morphisms, Lemmas
\ref{morphisms-lemma-base-change-quasi-finite},
\ref{morphisms-lemma-base-change-relative-dimension-d},
\ref{morphisms-lemma-base-change-differentials},
\ref{morphisms-lemma-base-change-unramified},
\ref{morphisms-lemma-base-change-proper}, and
\ref{morphisms-lemma-base-change-finite}.
Hence in each case we need only to prove that if $f$ has
the desired property, so does $f'$.
\medskip\noindent
A morphism is locally quasi-finite if and only if it is locally
of finite type and the scheme theoretic fibres are discrete spaces, see
Morphisms, Lemma \ref{morphisms-lemma-locally-quasi-finite-fibres}.
Since the underlying topological space is unchanged by
passing to a thickening, we see that $f'$ is locally quasi-finite if
(and only if) $f$ is. This proves (1).
\medskip\noindent
Case (2) follows from case (5) of Lemma \ref{lemma-thicken-property-morphisms}
and the fact that the finite morphisms are precisely
the integral morphisms that are locally of finite type
(Morphisms, Lemma \ref{morphisms-lemma-finite-integral}).
\medskip\noindent
Case (3). This follows immediately from
Morphisms, Lemma \ref{morphisms-lemma-check-closed-infinitesimally}.
\medskip\noindent
Case (4) follows from the following algebra statement: Let $A$ be a ring and
let $I \subset A$ be a locally nilpotent ideal. Let $B$ be a finite type
$A$-algebra. If $\Omega_{(B/IB)/(A/I)} = 0$, then $\Omega_{B/A} = 0$.
Namely, the assumption means that $I\Omega_{B/A} = 0$, see
Algebra, Lemma \ref{algebra-lemma-differentials-base-change}.
On the other hand $\Omega_{B/A}$ is a finite $B$-module, see
Algebra, Lemma \ref{algebra-lemma-differentials-finitely-generated}.
Hence the vanishing of $\Omega_{B/A}$ follows from Nakayama's
lemma (Algebra, Lemma \ref{algebra-lemma-NAK}) and the fact
that $IB$ is contained in the Jacobson radical of $B$.
\medskip\noindent
Case (5) follows immediately from (4) and
Morphisms, Lemma \ref{morphisms-lemma-unramified-omega-zero}.
\medskip\noindent
Proof of (6). As $f$ is a monomorphism we have $X = X \times_Y X$.
We may apply the results proved so far to the morphism of thickenings
$(X \subset X') \to (X \times_Y X \subset X' \times_{Y'} X')$.
We conclude $\Delta_{X'/Y'} : X' \to X' \times_{Y'} X'$
is a closed immersion by (3). In fact $\Delta_{X'/Y'}$ is a bijection on
underlying sets, hence $\Delta_{X'/Y'}$ is a thickening. On the other hand
$\Delta_{X'/Y'}$ is locally of finite presentation by
Morphisms, Lemma \ref{morphisms-lemma-diagonal-morphism-finite-type}.
In other words, $\Delta_{X'/Y'}(X')$ is cut out by
a quasi-coherent sheaf of ideals
$\mathcal{J} \subset \mathcal{O}_{X' \times_{Y'} X'}$ of finite type.
Since $\Omega_{X'/Y'} = 0$ by (5) we see that
the conormal sheaf of $X' \to X' \times_{Y'} X'$ is zero by
Morphisms, Lemma \ref{morphisms-lemma-differentials-diagonal}.
In other words, $\mathcal{J}/\mathcal{J}^2 = 0$.
This implies $\Delta_{X'/Y'}$ is an isomorphism, for example
by Algebra, Lemma \ref{algebra-lemma-ideal-is-squared-union-connected}.
\medskip\noindent
Proof of (7). If $f : X \to Y$ is an immersion, then it factors as
$X \to V \to Y$ where $V \to Y$ is an open immersion and $X \to V$ is a
closed immersion. Let $V' \subset Y'$ be the open subscheme whose
underlying topological space is the same as $V$. Then $X' \to V'$
factors through $V'$ and we conclude that $X' \to V'$ is a closed
immersion by part (3).
\medskip\noindent
Case (8) follows from Lemma \ref{lemma-thicken-property-morphisms}
and the definition of proper morphisms as being the quasi-compact,
universally closed, and separated morphisms that are locally of finite type.
\end{proof}
\section{Picard groups of thickenings}
\label{section-picard-group-thickening}
\noindent
Some material on Picard groups of thickenings.
\begin{lemma}
\label{lemma-picard-group-first-order-thickening}
Let $X \subset X'$ be a first order thickening
with ideal sheaf $\mathcal{I}$. Then there is a canonical
exact sequence
$$
\xymatrix{
0 \ar[r] &
H^0(X, \mathcal{I}) \ar[r] &
H^0(X', \mathcal{O}_{X'}^*) \ar[r] &
H^0(X, \mathcal{O}^*_X) \ar `r[d] `d[l] `l[llld] `d[dll] [dll] \\
& H^1(X, \mathcal{I}) \ar[r] &
\Pic(X') \ar[r] &
\Pic(X) \ar `r[d] `d[l] `l[llld] `d[dll] [dll] \\
& H^2(X, \mathcal{I}) \ar[r] & \ldots \ar[r] & \ldots
}
$$
of abelian groups.
\end{lemma}
\begin{proof}
This is the long exact cohomology sequence associated to the
short exact sequence of sheaves of abelian groups
$$
0 \to \mathcal{I} \to \mathcal{O}_{X'}^* \to \mathcal{O}_X^* \to 0
$$
where the first map sends a local section $f$ of $\mathcal{I}$
to the invertible section $1 + f$ of $\mathcal{O}_{X'}$.
We also use the identification of the Picard group of a
ringed space with the first cohomology group of the sheaf
of invertible functions, see
Cohomology, Lemma \ref{cohomology-lemma-h1-invertible}.
\end{proof}
\begin{lemma}
\label{lemma-torsion-pic-thickening}
Let $X \subset X'$ be a thickening. Let $n$ be an integer
invertible in $\mathcal{O}_X$. Then the map
$\Pic(X')[n] \to \Pic(X)[n]$ is bijective.
\end{lemma}
\begin{proof}[Proof for a finite order thickening]
By the general principle explained following
Definition \ref{definition-thickening}
this reduces to the case of a first order thickening.
Then may use Lemma \ref{lemma-picard-group-first-order-thickening}
to see that it suffices to show that
$H^1(X, \mathcal{I})[n]$, $H^1(X, \mathcal{I})/n$, and
$H^2(X, \mathcal{I})[n]$ are zero.
This follows as multiplication by $n$ on $\mathcal{I}$
is an isomorphism as it is an $\mathcal{O}_X$-module.
\end{proof}
\begin{proof}[Proof in general]
Let $\mathcal{I} \subset \mathcal{O}_{X'}$ be the quasi-coherent ideal
sheaf cutting out $X$. Then we have a short exact sequence of
abelian groups
$$
0 \to (1 + \mathcal{I})^* \to \mathcal{O}_{X'}^* \to \mathcal{O}_X^* \to 0
$$
We obtain a long exact cohomology sequence as in the statement of
Lemma \ref{lemma-picard-group-first-order-thickening}
with $H^i(X, \mathcal{I})$ replaced by $H^i(X, (1 + \mathcal{I})^*)$.
Thus it suffices to show that raising to the $n$th power is an
isomorphism $(1 + \mathcal{I})^* \to (1 + \mathcal{I})^*$.
Taking sections over affine opens this follows from
Algebra, Lemma \ref{algebra-lemma-lift-nth-roots}.
\end{proof}
\section{First order infinitesimal neighbourhood}
\label{section-first-order-infinitesimal-neighbourhood}
\noindent
A natural construction of first order thickenings is the following.
Suppose that $i : Z \to X$ be an immersion of schemes. Choose an
open subscheme $U \subset X$ such that $i$ identifies $Z$ with a closed
subscheme $Z \subset U$. Let $\mathcal{I} \subset \mathcal{O}_U$ be the
quasi-coherent sheaf of ideals defining $Z$ in $U$. Then we can consider
the closed subscheme $Z' \subset U$ defined by the quasi-coherent sheaf
of ideals $\mathcal{I}^2$.
\begin{definition}
\label{definition-first-order-infinitesimal-neighbourhood}
Let $i : Z \to X$ be an immersion of schemes. The
{\it first order infinitesimal neighbourhood} of $Z$ in $X$ is
the first order thickening $Z \subset Z'$ over $X$ described above.
\end{definition}
\noindent
This thickening has the following universal property (which will assuage
any fears that the construction above depends on the choice of the open
$U$).
\begin{lemma}
\label{lemma-first-order-infinitesimal-neighbourhood}
Let $i : Z \to X$ be an immersion of schemes. The first order infinitesimal
neighbourhood $Z'$ of $Z$ in $X$ has the following universal property:
Given any commutative diagram
$$
\xymatrix{
Z \ar[d]_i & T \ar[l]^a \ar[d] \\
X & T' \ar[l]_b
}
$$
where $T \subset T'$ is a first order thickening over $X$, there exists
a unique morphism $(a', a) : (T \subset T') \to (Z \subset Z')$ of
thickenings over $X$.
\end{lemma}
\begin{proof}
Let $U \subset X$ be the open used in the construction of $Z'$, i.e., an
open such that $Z$ is identified with a closed subscheme of $U$ cut out by
the quasi-coherent sheaf of ideals $\mathcal{I}$.
Since $|T| = |T'|$ we see that $b(T') \subset U$. Hence we can
think of $b$ as a morphism into $U$. Let $\mathcal{J} \subset \mathcal{O}_{T'}$
be the ideal cutting out $T$. Since $b(T) \subset Z$ by the diagram above
we see that $b^\sharp(b^{-1}\mathcal{I}) \subset \mathcal{J}$. As
$T'$ is a first order thickening of $T$ we see that $\mathcal{J}^2 = 0$
hence $b^\sharp(b^{-1}(\mathcal{I}^2)) = 0$. By
Schemes, Lemma \ref{schemes-lemma-characterize-closed-subspace}
this implies that $b$ factors through $Z'$. Denote $a' : T' \to Z'$
this factorization and everything is clear.
\end{proof}
\begin{lemma}
\label{lemma-infinitesimal-neighbourhood-conormal}
Let $i : Z \to X$ be an immersion of schemes. Let $Z \subset Z'$ be
the first order infinitesimal neighbourhood of $Z$ in $X$.
Then the diagram
$$
\xymatrix{
Z \ar[r] \ar[d] & Z' \ar[d] \\
Z \ar[r] & X
}
$$
induces a map of conormal sheaves $\mathcal{C}_{Z/X} \to \mathcal{C}_{Z/Z'}$ by
Morphisms, Lemma \ref{morphisms-lemma-conormal-functorial}.
This map is an isomorphism.
\end{lemma}
\begin{proof}
This is clear from the construction of $Z'$ above.
\end{proof}
\section{Formally unramified morphisms}
\label{section-formally-unramified}
\noindent
Recall that a ring map $R \to A$ is called {\it formally unramified}
(see Algebra, Definition \ref{algebra-definition-formally-unramified})
if for every commutative solid diagram
$$
\xymatrix{
A \ar[r] \ar@{-->}[rd] & B/I \\
R \ar[r] \ar[u] & B \ar[u]
}
$$
where $I \subset B$ is an ideal of square zero, at most one dotted
arrow exists which makes the diagram commute. This motivates
the following analogue for morphisms of schemes.
\begin{definition}
\label{definition-formally-unramified}
Let $f : X \to S$ be a morphism of schemes.
We say $f$ is {\it formally unramified} if given any solid commutative diagram
$$
\xymatrix{
X \ar[d]_f & T \ar[d]^i \ar[l] \\
S & T' \ar[l] \ar@{-->}[lu]
}
$$
where $T \subset T'$ is a first order thickening of affine schemes over $S$
there exists at most one dotted arrow making the diagram commute.
\end{definition}
\noindent
We first prove some formal lemmas, i.e., lemmas which can be proved by
drawing the corresponding diagrams.
\begin{lemma}
\label{lemma-formally-unramified-not-affine}
If $f : X \to S$ is a formally unramified morphism, then given
any solid commutative diagram
$$
\xymatrix{
X \ar[d]_f & T \ar[d]^i \ar[l] \\
S & T' \ar[l] \ar@{-->}[lu]
}
$$
where $T \subset T'$ is a first order thickening of schemes over $S$
there exists at most one dotted arrow making the diagram commute.
In other words, in
Definition \ref{definition-formally-unramified}
the condition that $T$ be affine may be dropped.
\end{lemma}
\begin{proof}
This is true because a morphism is determined by its restrictions
to affine opens.
\end{proof}
\begin{lemma}
\label{lemma-composition-formally-unramified}
A composition of formally unramified morphisms is formally unramified.
\end{lemma}
\begin{proof}
This is formal.
\end{proof}
\begin{lemma}
\label{lemma-base-change-formally-unramified}
A base change of a formally unramified morphism is formally unramified.
\end{lemma}
\begin{proof}
This is formal.
\end{proof}
\begin{lemma}
\label{lemma-formally-unramified-on-opens}
Let $f : X \to S$ be a morphism of schemes.
Let $U \subset X$ and $V \subset S$ be open such that
$f(U) \subset V$. If $f$ is formally unramified, so is $f|_U : U \to V$.
\end{lemma}
\begin{proof}
Consider a solid diagram
$$
\xymatrix{
U \ar[d]_{f|_U} & T \ar[d]^i \ar[l]^a \\
V & T' \ar[l] \ar@{-->}[lu]
}
$$
as in Definition \ref{definition-formally-unramified}. If $f$ is formally
ramified, then there exists at most one
$S$-morphism $a' : T' \to X$ such that $a'|_T = a$.
Hence clearly there exists at most one such morphism into $U$.
\end{proof}
\begin{lemma}
\label{lemma-affine-formally-unramified}
Let $f : X \to S$ be a morphism of schemes.
Assume $X$ and $S$ are affine.
Then $f$ is formally unramified if and only if
$\mathcal{O}_S(S) \to \mathcal{O}_X(X)$ is a formally unramified
ring map.
\end{lemma}
\begin{proof}
This is immediate from the definitions
(Definition \ref{definition-formally-unramified} and
Algebra, Definition \ref{algebra-definition-formally-unramified})
by the equivalence of categories of rings and affine schemes,
see
Schemes, Lemma \ref{schemes-lemma-category-affine-schemes}.
\end{proof}
\noindent
Here is a characterization in terms of the sheaf of differentials.
\begin{lemma}
\label{lemma-formally-unramified-differentials}
Let $f : X \to S$ be a morphism of schemes.
Then $f$ is formally unramified if and only if $\Omega_{X/S} = 0$.
\end{lemma}
\begin{proof}
We recall some of the arguments of the proof of
Morphisms, Lemma \ref{morphisms-lemma-differentials-affine}.
Let $W \subset X \times_S X$ be an open such that
$\Delta : X \to X \times_S X$ induces a closed immersion into $W$.
Let $\mathcal{J} \subset \mathcal{O}_W$ be the ideal sheaf of this
closed immersion. Let $X' \subset W$ be the closed subscheme
defined by the quasi-coherent sheaf of ideals $\mathcal{J}^2$.
Consider the two morphisms $p_1, p_2 : X' \to X$ induced by
the two projections $X \times_S X \to X$.
Note that $p_1$ and $p_2$ agree when composed with $\Delta : X \to X'$
and that $X \to X'$ is a closed immersion defined by a an ideal
whose square is zero. Moreover there is a short exact sequence
$$
0 \to \mathcal{J}/\mathcal{J}^2 \to \mathcal{O}_{X'} \to \mathcal{O}_X \to 0
$$
and $\Omega_{X/S} = \mathcal{J}/\mathcal{J}^2$. Moreover,
$\mathcal{J}/\mathcal{J}^2$ is generated by the local
sections $p_1^\sharp(f) - p_2^\sharp(f)$ for $f$ a local section of
$\mathcal{O}_X$.
\medskip\noindent
Suppose that $f : X \to S$ is formally unramified.
By assumption this means that $p_1 = p_2$ when restricted to any
affine open $T' \subset X'$. Hence $p_1 = p_2$. By what was said above
we conclude that $\Omega_{X/S} = \mathcal{J}/\mathcal{J}^2 = 0$.
\medskip\noindent
Conversely, suppose that $\Omega_{X/S} = 0$. Then $X' = X$. Take any pair
of morphisms $f'_1, f'_2 : T' \to X$ fitting as dotted arrows in
the diagram of
Definition \ref{definition-formally-unramified}.
This gives a morphism $(f'_1, f'_2) : T' \to X \times_S X$.
Since $f'_1|_T = f'_2|_T$ and $|T| =|T'|$ we see that the image of $T'$
under $(f'_1, f'_2)$ is contained in the open $W$ chosen above. Since
$(f'_1, f'_2)(T) \subset \Delta(X)$ and since $T$ is defined by an ideal
of square zero in $T'$ we see that $(f'_1, f'_2)$ factors through $X'$.
As $X' = X$ we conclude $f_1' = f'_2$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-unramified-formally-unramified}
\begin{slogan}
Unramified morphisms are the same as formally unramified morphism that
are locally of finite type.
\end{slogan}
Let $f : X \to S$ be a morphism of schemes.
The following are equivalent:
\begin{enumerate}
\item The morphism $f$ is unramified (resp.\ G-unramified), and
\item the morphism $f$ is locally of finite type (resp.\ locally of finite
presentation) and formally unramified.
\end{enumerate}
\end{lemma}
\begin{proof}
Use Lemma \ref{lemma-formally-unramified-differentials} and
Morphisms, Lemma \ref{morphisms-lemma-unramified-omega-zero}.
\end{proof}
\section{Universal first order thickenings}
\label{section-universal-thickening}
\noindent
Let $h : Z \to X$ be a morphism of schemes. A {\it universal first order
thickening} of $Z$ over $X$ is a first order thickening $Z \subset Z'$
over $X$ such that given any first order thickening $T \subset T'$
over $X$ and a solid commutative diagram
$$
\xymatrix{
& Z \ar[ld] & & T \ar[rd] \ar[ll]^a \\
Z' \ar[rrd] & & & & T' \ar@{..>}[llll]_{a'} \ar[lld]^b \\
& & X
}
$$
there exists a unique dotted arrow making the diagram commute.
Note that in this situation $(a, a') : (T \subset T') \to (Z \subset Z')$
is a morphism of thickenings over $X$. Thus if a universal first order
thickening exists, then it is unique up to unique isomorphism.
In general a universal first order thickening
does not exist, but if $h$ is formally unramified then it does.
\begin{lemma}
\label{lemma-universal-thickening}
Let $h : Z \to X$ be a formally unramified morphism of schemes.
There exists a universal first order thickening $Z \subset Z'$ of
$Z$ over $X$.
\end{lemma}
\begin{proof}
During this proof we will say $Z \subset Z'$ is a universal first order
thickening of $Z$ over $X$ if it satisfies the condition of the lemma.
We will construct the universal first order thickening $Z \subset Z'$ over $X$
by glueing, starting with the affine case which is
Algebra, Lemma \ref{algebra-lemma-universal-thickening}.
We begin with some general remarks.
\medskip\noindent
If a universal first order thickening of $Z$ over $X$ exists, then it is unique
up to unique isomorphism. Moreover, suppose that $V \subset Z$ and
$U \subset X$ are open subschemes such that $h(V) \subset U$. Let
$Z \subset Z'$ be a universal first order thickening of $Z$ over $X$.
Let $V' \subset Z'$ be the open subscheme such that $V = Z \cap V'$.
Then we claim that $V \subset V'$ is the universal first order thickening of
$V$ over $U$. Namely, suppose given any diagram
$$
\xymatrix{
V \ar[d]_h & T \ar[l]^a \ar[d] \\
U & T' \ar[l]_b
}
$$
where $T \subset T'$ is a first order thickening over $U$. By the universal
property of $Z'$ we obtain $(a, a') : (T \subset T') \to (Z \subset Z')$.
But since we have equality $|T| = |T'|$ of underlying topological spaces