-
Notifications
You must be signed in to change notification settings - Fork 152
/
moduli-curves.tex
3412 lines (3048 loc) · 125 KB
/
moduli-curves.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Moduli of Curves}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we discuss some of the familiar moduli stacks of curves.
A reference is the celebrated article of Deligne and Mumford, see \cite{DM}.
\section{Conventions and abuse of language}
\label{section-conventions}
\noindent
We continue to use the conventions and the abuse of language
introduced in
Properties of Stacks, Section \ref{stacks-properties-section-conventions}.
Unless otherwise mentioned our base scheme will be $\Spec(\mathbf{Z})$.
\section{The stack of curves}
\label{section-stack-curves}
\noindent
This section is the continuation of Quot, Section \ref{quot-section-curves}.
Let $\Curvesstack$ be the stack whose category of sections over a
scheme $S$ is the category of families of curves over $S$.
It is somewhat important to keep in mind that a
{\it family of curves} is a morphism $f : X \to S$ where $X$
is an algebraic space (!) and $f$ is flat, proper, of finite presentation
and of relative dimension $\leq 1$.
We already know that $\Curvesstack$ is an
algebraic stack over $\mathbf{Z}$, see Quot, Theorem
\ref{quot-theorem-curves-algebraic}.
If we did not allow algebraic spaces in the definition of
our stack, then this theorem would be false.
\medskip\noindent
Often base change is denoted by a subscript, but we cannot use
this notation for $\Curvesstack$ because $\Curvesstack_S$
is our notation for the fibre category over $S$.
This is why in Quot, Remark \ref{quot-remark-curves-base-change}
we used $B\text{-}\Curvesstack$ for the base change
$$
B\text{-}\Curvesstack = \Curvesstack \times B
$$
to the algebraic space $B$. The product on the right is over the
final object, i.e., over $\Spec(\mathbf{Z})$. The object on the left
is the stack classifying families of curves on the category of schemes
over $B$. In particular, if $k$ is a field, then
$$
k\text{-}\Curvesstack = \Curvesstack \times \Spec(k)
$$
is the moduli stack classifying families of curves on the category
of schemes over $k$.
Before we continue, here is a sanity check.
\begin{lemma}
\label{lemma-extend-curves-to-spaces}
Let $T \to B$ be a morphism of algebraic spaces. The category
$$
\Mor_B(T, B\text{-}\Curvesstack) = \Mor(T, \Curvesstack)
$$
is the category of families of curves over $T$.
\end{lemma}
\begin{proof}
A family of curves over $T$ is a morphism $f : X \to T$ of algebraic
spaces, which is flat, proper, of finite presentation, and has
relative dimension $\leq 1$ (Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-relative-dimension}).
This is exactly the same as the definition in
Quot, Situation \ref{quot-situation-curves}
except that $T$ the base is allowed to be an algebraic space.
Our default base category for algebraic stacks/spaces
is the category of schemes, hence the lemma does not follow
immediately from the definitions. Having said this, we encourage
the reader to skip the proof.
\medskip\noindent
By the product description of $B\text{-}\Curvesstack$ given above,
it suffices to prove the lemma in the absolute case. Choose a scheme
$U$ and a surjective \'etale morphism $p : U \to T$.
Let $R = U \times_T U$ with projections $s, t : R \to U$.
\medskip\noindent
Let $v : T \to \Curvesstack$ be a morphism. Then $v \circ p$
corresponds to a family of curves $X_U \to U$. The canonical
$2$-morphism $v \circ p \circ t \to v \circ p \circ s$
is an isomorphism $\varphi : X_U \times_{U, s} R \to X_U \times_{U, t} R$.
This isomorphism satisfies the cocycle condition on
$R \times_{s, t} R$.
By Bootstrap, Lemma \ref{bootstrap-lemma-descend-algebraic-space}
we obtain a morphism of algebraic spaces $X \to T$
whose pullback to $U$ is equal to $X_U$ compatible with $\varphi$.
Since $\{U \to T\}$ is an \'etale covering, we see that
$X \to T$ is flat, proper, of finite presentation by
Descent on Spaces, Lemmas
\ref{spaces-descent-lemma-descending-property-flat},
\ref{spaces-descent-lemma-descending-property-proper}, and
\ref{spaces-descent-lemma-descending-property-finite-presentation}.
Also $X \to T$ has relative dimension $\leq 1$ because this is
an \'etale local property. Hence $X \to T$ is a family of curves over $T$.
\medskip\noindent
Conversely, let $X \to T$ be a family of curves. Then the
base change $X_U$ determines a morphism $w : U \to \Curvesstack$
and the canonical isomorphism $X_U \times_{U, s} R \to X_U \times_{U, t} R$
determines a $2$-arrow $w \circ s \to w \circ t$ satisfying the
cocycle condition. Thus a morphism $v : T = [U/R] \to \Curvesstack$
by the universal property of the quotient $[U/R]$, see
Groupoids in Spaces, Lemma
\ref{spaces-groupoids-lemma-quotient-stack-2-coequalizer}.
(Actually, it is much easier in this case to go back to before
we introduced our abuse of language and direct construct
the functor $\Sch/T \to \Curvesstack$ which ``is'' the
morphism $T \to \Curvesstack$.)
\medskip\noindent
We omit the verification that the constructions given above
extend to morphisms between objects and are mutually quasi-inverse.
\end{proof}
\section{The stack of polarized curves}
\label{section-polarized-curves}
\noindent
In this section we work out some of the material
discussed in Quot, Remark \ref{quot-remark-alternative-approach-curves}.
Consider the $2$-fibre product
$$
\xymatrix{
\Curvesstack \times_{\Spacesstack'_{fp, flat, proper}}
\Polarizedstack \ar[r] \ar[d] &
\Polarizedstack \ar[d] \\
\Curvesstack \ar[r] &
\Spacesstack'_{fp, flat, proper}
}
$$
We denote this $2$-fibre product by
$$
\textit{PolarizedCurves} =
\Curvesstack
\times_{\Spacesstack'_{fp, flat, proper}}
\Polarizedstack
$$
This fibre product parametrizes polarized curves, i.e., families
of curves endowed with a relatively ample invertible sheaf.
More precisely, an object of
$\textit{PolarizedCurves}$
is a pair $(X \to S, \mathcal{L})$ where
\begin{enumerate}
\item $X \to S$ is a morphism of schemes which is proper, flat,
of finite presentation, and has relative dimension $\leq 1$, and
\item $\mathcal{L}$ is an invertible $\mathcal{O}_X$-module
which is relatively ample on $X/S$.
\end{enumerate}
A morphism $(X' \to S', \mathcal{L}') \to (X \to S, \mathcal{L})$
between objects of
$\textit{PolarizedCurves}$
is given by a triple $(f, g, \varphi)$
where $f : X' \to X$ and $g : S' \to S$
are morphisms of schemes which fit into a commutative diagram
$$
\xymatrix{
X' \ar[d] \ar[r]_f & X \ar[d] \\
S' \ar[r]^g & S
}
$$
inducing an isomorphism $X' \to S' \times_S X$, in other words, the
diagram is cartesian, and $\varphi : f^*\mathcal{L} \to \mathcal{L}'$
is an isomorphism. Composition is defined in the obvious manner.
\begin{lemma}
\label{lemma-polarized-curves-in-polarized}
The morphism
$\textit{PolarizedCurves} \to
\Polarizedstack$ is an open and closed immersion.
\end{lemma}
\begin{proof}
This is true because the $1$-morphism
$\Curvesstack \to \Spacesstack'_{fp, flat, proper}$
is representable by open and closed immersions, see
Quot, Lemma \ref{quot-lemma-curves-open-and-closed-in-spaces}.
\end{proof}
\begin{lemma}
\label{lemma-polarized-curves-over-curves}
The morphism
$\textit{PolarizedCurves} \to \Curvesstack$
is smooth and surjective.
\end{lemma}
\begin{proof}
Surjective. Given a field $k$ and a proper algebraic space
$X$ over $k$ of dimension $\leq 1$, i.e., an object of $\Curvesstack$ over $k$.
By Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-codim-1-point-in-schematic-locus}
the algebraic space $X$ is a scheme. Hence $X$
is a proper scheme of dimension $\leq 1$ over $k$.
By Varieties, Lemma \ref{varieties-lemma-dim-1-proper-projective}
we see that $X$ is H-projective over $\kappa$.
In particular, there exists an ample invertible $\mathcal{O}_X$-module
$\mathcal{L}$ on $X$. Then $(X, \mathcal{L})$ is an object
of $\textit{PolarizedCurves}$ over
$k$ which maps to $X$.
\medskip\noindent
Smooth. Let $X \to S$ be an object of $\Curvesstack$, i.e., a
morphism $S \to \Curvesstack$. It is clear that
$$
\textit{PolarizedCurves}
\times_{\Curvesstack} S
\subset \Picardstack_{X/S}
$$
is the substack of objects $(T/S, \mathcal{L}/X_T)$ such that
$\mathcal{L}$ is ample on $X_T/T$. This is an open substack by
Descent on Spaces, Lemma \ref{spaces-descent-lemma-ample-in-neighbourhood}.
Since $\Picardstack_{X/S} \to S$ is smooth by
Moduli Stacks, Lemma \ref{moduli-lemma-pic-curves-smooth}
we win.
\end{proof}
\begin{lemma}
\label{lemma-etale-locally-scheme}
Let $X \to S$ be a family of curves.
Then there exists an \'etale covering $\{S_i \to S\}$
such that $X_i = X \times_S S_i$ is a scheme. We may even
assume $X_i$ is H-projective over $S_i$.
\end{lemma}
\begin{proof}
This is an immediate corollary of
Lemma \ref{lemma-polarized-curves-over-curves}.
Namely, unwinding the definitions, this lemma gives there is a
surjective smooth morphism $S' \to S$ such that $X' = X \times_S S'$
comes endowed with an invertible $\mathcal{O}_{X'}$-module
$\mathcal{L}'$ which is ample on $X'/S'$.
Then we can refine the smooth covering $\{S' \to S\}$
by an \'etale covering $\{S_i \to S\}$, see
More on Morphisms, Lemma \ref{more-morphisms-lemma-etale-dominates-smooth}.
After replacing $S_i$ by a suitable open covering we may assume
$X_i \to S_i$ is H-projective, see
Morphisms, Lemmas \ref{morphisms-lemma-proper-ample-locally-projective} and
\ref{morphisms-lemma-characterize-locally-projective}
(this is also discussed in detail in
More on Morphisms, Section \ref{more-morphisms-section-projective}).
\end{proof}
\section{Properties of the stack of curves}
\label{section-properties}
\noindent
The following lemma isn't true for moduli of surfaces, see
Remark \ref{remark-boundedness-aut-does-not-work-surfaces}.
\begin{lemma}
\label{lemma-curves-diagonal-separated-fp}
The diagonal of $\Curvesstack$ is separated
and of finite presentation.
\end{lemma}
\begin{proof}
Recall that $\Curvesstack$ is a limit preserving algebraic stack, see
Quot, Lemma \ref{quot-lemma-curves-limits}.
By Limits of Stacks, Lemma \ref{stacks-limits-lemma-limit-preserving-diagonal}
this implies that
$\Delta : \Polarizedstack \to \Polarizedstack \times \Polarizedstack$
is limit preserving. Hence $\Delta$ is locally of finite presentation
by Limits of Stacks, Proposition
\ref{stacks-limits-proposition-characterize-locally-finite-presentation}.
\medskip\noindent
Let us prove that $\Delta$ is separated. To see this, it suffices to show
that given a scheme $U$ and two objects $Y \to U$ and $X \to U$ of
$\Curvesstack$ over $U$, the algebraic space
$$
\mathit{Isom}_U(Y, X)
$$
is separated. This we have seen in
Moduli Stacks, Lemmas \ref{moduli-lemma-Mor-s-lfp} and
\ref{moduli-lemma-Isom-in-Mor} that the target is
a separated algebraic space.
\medskip\noindent
To finish the proof we show that $\Delta$ is quasi-compact. Since
$\Delta$ is representable by algebraic spaces, it suffices to check
the base change of $\Delta$ by a surjective smooth morphism
$U \to \Curvesstack \times \Curvesstack$ is quasi-compact
(see for example Properties of Stacks, Lemma
\ref{stacks-properties-lemma-check-property-covering}).
We choose $U = \coprod U_i$ to be a disjoint union of affine opens
with a surjective smooth morphism
$$
U \longrightarrow
\textit{PolarizedCurves} \times \textit{PolarizedCurves}
$$
Then $U \to \Curvesstack \times \Curvesstack$ will be surjective
and smooth since $\textit{PolarizedCurves} \to \Curvesstack$
is surjective and smooth by Lemma \ref{lemma-polarized-curves-over-curves}.
Since $\textit{PolarizedCurves}$ is limit preserving
(by Artin's Axioms, Lemma \ref{artin-lemma-fibre-product-limit-preserving}
and Quot, Lemmas \ref{quot-lemma-curves-limits},
\ref{quot-lemma-polarized-limits}, and
\ref{quot-lemma-spaces-limits}), we
see that $\textit{PolarizedCurves} \to \Spec(\mathbf{Z})$ is locally of
finite presentation, hence $U_i \to \Spec(\mathbf{Z})$ is
locally of finite presentation
(Limits of Stacks, Proposition
\ref{stacks-limits-proposition-characterize-locally-finite-presentation}
and Morphisms of Stacks, Lemmas
\ref{stacks-morphisms-lemma-composition-finite-presentation} and
\ref{stacks-morphisms-lemma-smooth-locally-finite-presentation}).
In particular, $U_i$ is Noetherian affine. This reduces us to the
case discussed in the next paragraph.
\medskip\noindent
In this paragraph, given a Noetherian affine scheme $U$ and two objects
$(Y, \mathcal{N})$ and $(X, \mathcal{L})$
of $\textit{PolarizedCurves}$ over $U$, we show the algebraic space
$$
\mathit{Isom}_U(Y, X)
$$
is quasi-compact. Since the connected components of $U$ are open and closed
we may replace $U$ by these. Thus we may and do assume $U$ is connected.
Let $u \in U$ be a point. Let $Q$, $P$ be the Hilbert polynomials
of these families, i.e.,
$$
Q(n) = \chi(Y_u, \mathcal{N}_u^{\otimes n})
\quad\text{and}\quad
P(n) = \chi(X_u, \mathcal{L}_u^{\otimes n})
$$
see Varieties, Lemma \ref{varieties-lemma-numerical-polynomial-from-euler}.
Since $U$ is connected and since
the functions
$u \mapsto \chi(Y_u, \mathcal{N}_u^{\otimes n})$ and
$u \mapsto \chi(X_u, \mathcal{L}_u^{\otimes n})$
are locally constant (see
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-chi-locally-constant-geometric})
we see that we get the same Hilbert polynomial in every point of $U$.
Set
$$
\mathcal{M} = \text{pr}_1^*\mathcal{N}
\otimes_{\mathcal{O}_{Y \times_U X}} \text{pr}_2^*\mathcal{L}
$$
on $Y \times_U X$. Given $(f, \varphi) \in \mathit{Isom}_U(Y, X)(T)$
for some scheme $T$ over $U$ then for every $t \in T$ we have
\begin{align*}
\chi(Y_t, (\text{id} \times f)^*\mathcal{M}^{\otimes n})
& =
\chi(Y_t,
\mathcal{N}_t^{\otimes n} \otimes_{\mathcal{O}_{Y_t}}
f_t^*\mathcal{L}_t^{\otimes n}) \\
& =
n\deg(\mathcal{N}_t) + n\deg(f_t^*\mathcal{L}_t) +
\chi(Y_t, \mathcal{O}_{Y_t}) \\
& =
Q(n) + n\deg(\mathcal{L}_t) \\
& =
Q(n) + P(n) - P(0)
\end{align*}
by Riemann-Roch for proper curves, more precisely by
Varieties, Definition \ref{varieties-definition-degree-invertible-sheaf} and
Lemma \ref{varieties-lemma-degree-tensor-product}
and the fact that $f_t$ is an isomorphism.
Setting $P'(t) = Q(t) + P(t) - P(0)$ we find
$$
\mathit{Isom}_U(Y, X) =
\mathit{Isom}_U(Y, X) \cap \mathit{Mor}^{P', \mathcal{M}}_U(Y, X)
$$
The intersection is an intersection of open subspaces of
$\mathit{Mor}_U(Y, X)$, see
Moduli Stacks, Lemma \ref{moduli-lemma-Isom-in-Mor} and
Remark \ref{moduli-remark-Mor-numerical}.
Now $\mathit{Mor}^{P', \mathcal{M}}_U(Y, X)$
is a Noetherian algebraic space as it is of finite
presentation over $U$ by
Moduli Stacks, Lemma \ref{moduli-lemma-Mor-qc-over-base}.
Thus the intersection is a Noetherian algebraic space too
and the proof is finished.
\end{proof}
\begin{remark}
\label{remark-boundedness-aut-does-not-work-surfaces}
The boundedness argument in the proof of
Lemma \ref{lemma-curves-diagonal-separated-fp}
does not work for moduli of surfaces and in fact,
the result is wrong, for example because K3 surfaces
over fields can have infinite discrete automorphism groups.
The ``reason'' the argument does not work is that on a
projective surface $S$ over a field,
given ample invertible sheaves $\mathcal{N}$
and $\mathcal{L}$ with Hilbert polynomials $Q$ and $P$,
there is no a priori bound on the Hilbert polynomial
of $\mathcal{N} \otimes_{\mathcal{O}_S} \mathcal{L}$.
In terms of intersection theory, if $H_1$, $H_2$ are ample effective
Cartier divisors on $S$,
then there is no (upper) bound on the intersection number $H_1 \cdot H_2$
in terms of $H_1 \cdot H_1$ and $H_2 \cdot H_2$.
\end{remark}
\begin{lemma}
\label{lemma-curves-qs-lfp}
The morphism $\Curvesstack \to \Spec(\mathbf{Z})$ is quasi-separated and
locally of finite presentation.
\end{lemma}
\begin{proof}
To check $\Curvesstack \to \Spec(\mathbf{Z})$ is quasi-separated we have to
show that its diagonal is quasi-compact and quasi-separated.
This is immediate from Lemma \ref{lemma-curves-diagonal-separated-fp}.
To prove that $\Curvesstack \to \Spec(\mathbf{Z})$ is locally of finite
presentation, it suffices to show that $\Curvesstack$
is limit preserving, see Limits of Stacks, Proposition
\ref{stacks-limits-proposition-characterize-locally-finite-presentation}.
This is Quot, Lemma \ref{quot-lemma-curves-limits}.
\end{proof}
\section{Open substacks of the stack of curves}
\label{section-open}
\noindent
Below we will often characterize an open substack of $\Curvesstack$
by a property $P$ of morphisms of algebraic spaces. To see that $P$
defines an open substack it suffices to check
\begin{enumerate}
\item[(o)] given a family of curves $f : X \to S$ there exists
a largest open subscheme $S' \subset S$ such that
$f|_{f^{-1}(S')} : f^{-1}(S') \to S'$ has $P$ and such that
formation of $S'$ commutes with arbitrary base change.
\end{enumerate}
Namely, suppose (o) holds. Choose a scheme $U$ and a surjective
smooth morphism $m : U \to \Curvesstack$. Let
$R = U \times_{\Curvesstack} U$ and denote $t, s : R \to U$
the projections. Recall that $\Curvesstack = [U/R]$ is a presentation,
see Algebraic Stacks, Lemma \ref{algebraic-lemma-stack-presentation} and
Definition \ref{algebraic-definition-presentation}.
By construction of $\Curvesstack$ as
the stack of curves, the morphism $m$ is the classifying morphism
for a family of curves $C \to U$. The $2$-commutativity
of the diagram
$$
\xymatrix{
R \ar[r]_s \ar[d]_t & U \ar[d] \\
U \ar[r] & \Curvesstack
}
$$
implies that $C \times_{U, s} R \cong C \times_{U, t} R$
(isomorphism of families of curves over $R$). Let $W \subset U$
be the largest open subscheme such that
$f|_{f^{-1}(W)} : f^{-1}(W) \to W$ has $P$ as in (o).
Since formation of $W$ commutes with base change according to (o)
and by the isomorphism above we find that $s^{-1}(W) = t^{-1}(W)$.
Thus $W \subset U$ corresponds to an open substack
$$
\Curvesstack^P \subset \Curvesstack
$$
according to Properties of Stacks, Lemma
\ref{stacks-properties-lemma-immersion-presentation}.
\medskip\noindent
Continuing with the setup of the previous paragrpah, we claim
the open substack $\Curvesstack^P$ has the following two universal properties:
\begin{enumerate}
\item given a family of curves $X \to S$ the following are equivalent
\begin{enumerate}
\item the classifying morphism $S \to \Curvesstack$ factors through
$\Curvesstack^P$,
\item the morphism $X \to S$ has $P$,
\end{enumerate}
\item given $X$ a proper scheme over a field $k$ of dimension $\leq 1$
the following are equivalent
\begin{enumerate}
\item the classifying morphism $\Spec(k) \to \Curvesstack$ factors
through $\Curvesstack^P$,
\item the morphism $X \to \Spec(k)$ has $P$.
\end{enumerate}
\end{enumerate}
This follows by considering the $2$-fibre product
$$
\xymatrix{
T \ar[r]_p \ar[d]_q & U \ar[d] \\
S \ar[r] & \Curvesstack
}
$$
Observe that $T \to S$ is surjective and smooth as the base
change of $U \to \Curvesstack$. Thus the open $S' \subset S$
given by (o) is determined by its inverse image in $T$.
However, by the invariance under base change of these opens in (o)
and because $X \times_S T \cong C \times_U T$ by the $2$-commutativity,
we find $q^{-1}(S') = p^{-1}(W)$ as opens of $T$.
This immediately implies (1). Part (2) is a special case of (1).
\medskip\noindent
Given two properties $P$ and $Q$ of morphisms of algebraic spaces,
supposing we already have established $\Curvesstack^Q$ is
an open substack of $\Curvesstack$, then we can use exactly
the same method to prove openness of
$\Curvesstack^{Q, P} \subset \Curvesstack^Q$.
We omit a precise explanation.
\section{Curves with finite reduced automorphism groups}
\label{section-finite-aut}
\noindent
Let $X$ be a proper scheme over a field $k$ of dimension $\leq 1$, i.e.,
an object of $\Curvesstack$ over $k$.
By Lemma \ref{lemma-curves-diagonal-separated-fp}
the automorphism group algebraic space $\mathit{Aut}(X)$
is finite type and separated over $k$.
In particular, $\mathit{Aut}(X)$ is a group scheme, see
More on Groupoids in Spaces, Lemma
\ref{spaces-more-groupoids-lemma-group-space-scheme-locally-finite-type-over-k}.
If the characteristic of $k$ is zero, then $\mathit{Aut}(X)$
is reduced and even smooth over $k$ (Groupoids, Lemma
\ref{groupoids-lemma-group-scheme-characteristic-zero-smooth}).
However, in general $\mathit{Aut}(X)$ is not reduced, even
if $X$ is geometrically reduced.
\begin{example}[Non-reduced automorphism group]
\label{example-non-reduced}
Let $k$ be an algebraically closed field of characteristic $2$.
Set $Y = Z = \mathbf{P}^1_k$. Choose three pairwise distinct $k$-valued points
$a, b, c$ in $\mathbf{A}^1_k$. Thinking of
$\mathbf{A}^1_k \subset \mathbf{P}^1_k = Y = Z$ as an open subschemes,
we get a closed immersion
$$
T = \Spec(k[t]/(t - a)^2) \amalg \Spec(k[t]/(t - b)^2)
\amalg \Spec(k[t]/(t - c)^2)
\longrightarrow
\mathbf{P}^1_k
$$
Let $X$ be the pushout in the diagram
$$
\xymatrix{
T \ar[r] \ar[d] & Y \ar[d] \\
Z \ar[r] & X
}
$$
Let $U \subset X$ be the affine open part which is the image of
$\mathbf{A}^1_k \amalg \mathbf{A}^1_k$. Then we have an equalizer
diagram
$$
\xymatrix{
\mathcal{O}_X(U) \ar[r] &
k[t] \times k[t] \ar@<1ex>[r] \ar@<-1ex>[r] &
k[t]/(t - a)^2 \times k[t]/(t - b)^2 \times k[t]/(t - c)^2
}
$$
Over the dual numbers $A = k[\epsilon]$ we have a nontrivial automorphism
of this equalizer diagram sending $t$ to $t + \epsilon$. We leave it to the
reader to see that this automorphism extends to an automorphism of $X$
over $A$. On the other hand, the reader easily shows that the
automorphism group of $X$ over $k$ is finite.
Thus $\mathit{Aut}(X)$ must be non-reduced.
\end{example}
\noindent
Let $X$ be a proper scheme over a field $k$ of dimension $\leq 1$, i.e.,
an object of $\Curvesstack$ over $k$. If $\mathit{Aut}(X)$
is geometrically reduced, then it need not be the case that
it has dimension $0$, even if $X$ is smooth and geometrically connected.
\begin{example}[Smooth positive dimensional automorphism group]
\label{example-pos-dim}
Let $k$ be an algebraically closed field. If $X$ is a smooth
genus $0$, resp.\ $1$ curve, then the automorphism group has
dimension $3$, resp.\ $1$. Namely, in the genus $0$ case we have
$X \cong \mathbf{P}^1_k$ by Algebraic Curves, Proposition
\ref{curves-proposition-projective-line}. Since
$$
\mathit{Aut}(\mathbf{P}^1_k) = \text{PGL}_{2, k}
$$
as functors we see that the dimension is $3$. On the other hand,
if the genus of $X$ is $1$, then we see that the map
$X = \underline{\Hilbfunctor}^1_{X/k} \to
\underline{\Picardfunctor}^1_{X/k}$ is an isomorphism, see
Picard Schemes of Curves, Lemma \ref{pic-lemma-picard-pieces}
and
Algebraic Curves, Theorem \ref{curves-theorem-curves-rational-maps}.
Thus $X$ has the structure of an abelian variety
(since $\underline{\Picardfunctor}^1_{X/k} \cong
\underline{\Picardfunctor}^0_{X/k}$).
In particular the (co)tangent bundle of $X$ are trivial
(Groupoids, Lemma \ref{groupoids-lemma-group-scheme-module-differentials}).
We conclude that $\dim_k H^0(X, T_X) = 1$ hence
$\dim \mathit{Aut}(X) \leq 1$. On the other hand, the translations
(viewing $X$ as a group scheme) provide a $1$-dimensional
piece of $\text{Aut}(X)$ and we conlude its dimension is indeed $1$.
\end{example}
\noindent
It turns out that there is an open substack of
$\Curvesstack$ parametrizing curves whose automorphism
group is geometrically reduced and finite.
Here is a precise statement.
\begin{lemma}
\label{lemma-DM-curves}
There exist an open substack $\Curvesstack^{DM} \subset \Curvesstack$
with the following properties
\begin{enumerate}
\item $\Curvesstack^{DM} \subset \Curvesstack$ is the maximal
open substack which is DM,
\item given a family of curves $X \to S$ the following are equivalent
\begin{enumerate}
\item the classifying morphism $S \to \Curvesstack$ factors through
$\Curvesstack^{DM}$,
\item the group algebraic space $\mathit{Aut}_S(X)$ is unramified over $S$,
\end{enumerate}
\item given $X$ a proper scheme over a field $k$ of dimension $\leq 1$
the following are equivalent
\begin{enumerate}
\item the classifying morphism $\Spec(k) \to \Curvesstack$ factors
through $\Curvesstack^{DM}$,
\item $\mathit{Aut}(X)$ is geometrically reduced over $k$ and
has dimension $0$,
\item $\mathit{Aut}(X) \to \Spec(k)$ is unramified.
\end{enumerate}
\end{enumerate}
\end{lemma}
\begin{proof}
The existence of an open substack with property (1) is
Morphisms of Stacks, Lemma \ref{stacks-morphisms-lemma-open-DM-locus}.
The points of this open substack are characterized by (3)(c) by
Morphisms of Stacks, Lemma \ref{stacks-morphisms-lemma-points-DM-locus}.
The equivalence of (3)(b) and (3)(c) is the statement that an
algebraic space $G$ which is locally of finite type, geometrically reduced,
and of dimension $0$ over a field $k$, is unramified over $k$.
First, $G$ is a scheme by Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-locally-finite-type-dim-zero}.
Then we can take an affine open in $G$ and observe
that it will be proper over $k$ and apply
Varieties, Lemma
\ref{varieties-lemma-proper-geometrically-reduced-global-sections}.
Minor details omitted.
\medskip\noindent
Part (2) is true because (3) holds. Namely, the morphism
$\mathit{Aut}_S(X) \to S$ is locally of finite type. Thus we can check whether
$\mathit{Aut}_S(X) \to S$ is unramified at all points of
$\mathit{Aut}_S(X)$ by checking on fibres at points of the scheme $S$, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-where-unramified}.
But after base change to a point of $S$ we fall back into
the equivalence of (3)(a) and (3)(c).
\end{proof}
\begin{lemma}
\label{lemma-in-DM-locus-vector-fields}
Let $X$ be a proper scheme over a field $k$ of dimension $\leq 1$.
Then properties (3)(a), (b), (c) are also equivalent to
$\text{Der}_k(\mathcal{O}_X, \mathcal{O}_X) = 0$.
\end{lemma}
\begin{proof}
In the discussion above we have seen that $G = \mathit{Aut}(X)$
is a group scheme over $\Spec(k)$ which is finite type and separated;
this uses Lemma \ref{lemma-curves-diagonal-separated-fp} and
More on Groupoids in Spaces, Lemma
\ref{spaces-more-groupoids-lemma-group-space-scheme-locally-finite-type-over-k}.
Then $G$ is unramified over $k$ if and only if $\Omega_{G/k} = 0$
(Morphisms, Lemma \ref{morphisms-lemma-unramified-omega-zero}).
By Groupoids, Lemma \ref{groupoids-lemma-group-scheme-module-differentials}
the vanishing holds if $T_{G/k, e} = 0$, where $T_{G/k, e}$ is the tangent
space to $G$ at the identity element $e \in G(k)$, see
Varieties, Definition \ref{varieties-definition-tangent-space}
and the formula in
Varieties, Lemma \ref{varieties-lemma-tangent-space-cotangent-space}.
Since $\kappa(e) = k$ the tangent space is defined in terms of
morphisms $\alpha : \Spec(k[\epsilon]) \to G = \mathit{Aut}(X)$
whose restriction to $\Spec(k)$ is $e$.
It follows that it suffices to show any automorphism
$$
\alpha :
X \times_{\Spec(k)} \Spec(k[\epsilon])
\longrightarrow
X \times_{\Spec(k)} \Spec(k[\epsilon])
$$
over $\Spec(k[\epsilon])$ whose restriction to $\Spec(k)$ is
$\text{id}_X$. Such automorphisms are
called infinitesimal automorphisms.
\medskip\noindent
The infinitesimal automorphisms of $X$ correspond $1$-to-$1$
with derivations of $\mathcal{O}_X$ over $k$. This follows from
More on Morphisms, Lemmas \ref{more-morphisms-lemma-difference-derivation} and
\ref{more-morphisms-lemma-action-by-derivations} (we only need the first one
as we don't care about the reverse direction; also, please look at
More on Morphisms, Remark \ref{more-morphisms-remark-another-special-case}
for an elucidation). For a different argument proving this equality
we refer the reader to
Deformation Problems, Lemma \ref{examples-defos-lemma-schemes-TI}.
\end{proof}
\section{Cohen-Macaulay curves}
\label{section-CM}
\noindent
There is an open substack of $\Curvesstack$ parametrizing
the Cohen-Macaulay ``curves''.
\begin{lemma}
\label{lemma-CM-curves}
There exist an open substack $\Curvesstack^{CM} \subset \Curvesstack$
such that
\begin{enumerate}
\item given a family of curves $X \to S$ the following are equivalent
\begin{enumerate}
\item the classifying morphism $S \to \Curvesstack$ factors
through $\Curvesstack^{CM}$,
\item the morphism $X \to S$ is Cohen-Macaulay,
\end{enumerate}
\item given a scheme $X$ proper over a field $k$ with $\dim(X) \leq 1$
the following are equivalent
\begin{enumerate}
\item the classifying morphism $\Spec(k) \to \Curvesstack$ factors
through $\Curvesstack^{CM}$,
\item $X$ is Cohen-Macaulay.
\end{enumerate}
\end{enumerate}
\end{lemma}
\begin{proof}
Let $f : X \to S$ be a family of curves. By
More on Morphisms of Spaces, Lemma
\ref{spaces-more-morphisms-lemma-flat-finite-presentation-CM-open}
the set
$$
W = \{x \in |X| : f \text{ is Cohen-Macaulay at }x\}
$$
is open in $|X|$ and formation of this open commutes with arbitrary
base change. Since $f$ is proper the subset
$$
S' = S \setminus f(|X| \setminus W)
$$
of $S$ is open and $X \times_S S' \to S'$ is Cohen-Macaulay.
Moreover, formation of $S'$ commutes with arbitrary base
change because this is true for $W$
Thus we get the open substack with the desired properties
by the method discussed in Section \ref{section-open}.
\end{proof}
\begin{lemma}
\label{lemma-CM-1-curves}
There exist an open substack $\Curvesstack^{CM, 1} \subset \Curvesstack$
such that
\begin{enumerate}
\item given a family of curves $X \to S$ the following are equivalent
\begin{enumerate}
\item the classifying morphism $S \to \Curvesstack$ factors
through $\Curvesstack^{CM, 1}$,
\item the morphism $X \to S$ is Cohen-Macaulay and has
relative dimension $1$ (Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-relative-dimension}),
\end{enumerate}
\item given a scheme $X$ proper over a field $k$ with $\dim(X) \leq 1$
the following are equivalent
\begin{enumerate}
\item the classifying morphism $\Spec(k) \to \Curvesstack$ factors
through $\Curvesstack^{CM, 1}$,
\item $X$ is Cohen-Macaulay and $X$ is equidimensional of
dimension $1$.
\end{enumerate}
\end{enumerate}
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-CM-curves} it is clear that we have
$\Curvesstack^{CM, 1} \subset \Curvesstack^{CM}$
if it exists. Let $f : X \to S$ be a family of curves
such that $f$ is a Cohen-Macaulay morphism. By
More on Morphisms of Spaces, Lemma
\ref{spaces-more-morphisms-lemma-lfp-CM-relative-dimension}
we have a decomposition
$$
X = X_0 \amalg X_1
$$
by open and closed subspaces such that $X_0 \to S$ has relative
dimension $0$ and $X_1 \to S$ has relative dimension $1$.
Since $f$ is proper the subset
$$
S' = S \setminus f(|X_0|)
$$
of $S$ is open and $X \times_S S' \to S'$ is Cohen-Macaulay
and has relative dimension $1$.
Moreover, formation of $S'$ commutes with arbitrary base
change because this is true for the decomposition above
(as relative dimension behaves well with respect to base
change, see Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-dimension-fibre-after-base-change}).
Thus we get the open substack with the desired properties
by the method discussed in Section \ref{section-open}.
\end{proof}
\section{Curves of a given genus}
\label{section-genus}
\noindent
The convention in the Stacks project is that the genus $g$ of a
proper $1$-dimensional scheme $X$ over a field $k$ is defined only
if $H^0(X, \mathcal{O}_X) = k$. In this case
$g = \dim_k H^1(X, \mathcal{O}_X)$.
See Algebraic Curves, Section \ref{curves-section-genus}.
The conditions needed to define the genus define an open substack
which is then a disjoint union of open substacks, one for each genus.
\begin{lemma}
\label{lemma-pre-genus-curves}
There exist an open substack $\Curvesstack^{h0, 1} \subset \Curvesstack$
such that
\begin{enumerate}
\item given a family of curves $f : X \to S$ the following are equivalent
\begin{enumerate}
\item the classifying morphism $S \to \Curvesstack$ factors
through $\Curvesstack^{h0, 1}$,
\item $f_*\mathcal{O}_X = \mathcal{O}_S$, this holds
after arbitrary base change, and the fibres of $f$ have dimension $1$,
\end{enumerate}
\item given a scheme $X$ proper over a field $k$ with $\dim(X) \leq 1$
the following are equivalent
\begin{enumerate}
\item the classifying morphism $\Spec(k) \to \Curvesstack$ factors
through $\Curvesstack^{h0, 1}$,
\item $H^0(X, \mathcal{O}_X) = k$ and $\dim(X) = 1$.
\end{enumerate}
\end{enumerate}
\end{lemma}
\begin{proof}
Given a family of curves $X \to S$ the set of $s \in S$ where
$\kappa(s) = H^0(X_s, \mathcal{O}_{X_s})$
is open in $S$ by Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-jump-loci-geometric}.
Also, the set of points in $S$ where the fibre has
dimension $1$ is open by More on Morphisms of Spaces, Lemma
\ref{spaces-more-morphisms-lemma-dimension-fibres-proper-flat}.
Moreover, if $f : X \to S$ is a family of curves all of whose fibres
have dimension $1$ (and in particular $f$ is surjective), then
condition (1)(b) is equivalent to
$\kappa(s) = H^0(X_s, \mathcal{O}_{X_s})$ for every $s \in S$, see
Derived Categories of Spaces, Lemma \ref{spaces-perfect-lemma-proper-flat-h0}.
Thus we see that the lemma follows from the general discussion in
Section \ref{section-open}.
\end{proof}
\begin{lemma}
\label{lemma-pre-genus-in-CM-1}
We have $\Curvesstack^{h0, 1} \subset \Curvesstack^{CM, 1}$
as open substacks of $\Curvesstack$.
\end{lemma}
\begin{proof}
See Algebraic Curves, Lemma \ref{curves-lemma-automatic} and
Lemmas \ref{lemma-pre-genus-curves} and \ref{lemma-CM-1-curves}.
\end{proof}
\begin{lemma}
\label{lemma-genus}
Let $f : X \to S$ be a family of curves such that
$\kappa(s) = H^0(X_s, \mathcal{O}_{X_s})$ for all $s \in S$, i.e.,
the classifying morphism $S \to \Curvesstack$ factors
through $\Curvesstack^{h0, 1}$ (Lemma \ref{lemma-pre-genus-curves}). Then
\begin{enumerate}
\item $f_*\mathcal{O}_X = \mathcal{O}_S$ and this holds universally,
\item $R^1f_*\mathcal{O}_X$ is a finite locally free $\mathcal{O}_S$-module,
\item for any morphism $h : S' \to S$ if $f' : X' \to S'$ is the base change,
then $h^*(R^1f_*\mathcal{O}_X) = R^1f'_*\mathcal{O}_{X'}$.
\end{enumerate}
\end{lemma}
\begin{proof}
We apply Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-proper-flat-h0}.
This proves part (1). It also implies that locally on $S$
we can write $Rf_*\mathcal{O}_X = \mathcal{O}_S \oplus P$
where $P$ is perfect of tor amplitude in $[1, \infty)$.
Recall that formation of $Rf_*\mathcal{O}_X$ commutes
with arbitrary base change
(Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-flat-proper-perfect-direct-image-general}).
Thus for $s \in S$ we have
$$
H^i(P \otimes_{\mathcal{O}_S}^\mathbf{L} \kappa(s)) =
H^i(X_s, \mathcal{O}_{X_s})
\text{ for }i \geq 1
$$
This is zero unless $i = 1$ since $X_s$ is a $1$-dimensional
Noetherian scheme, see
Cohomology, Proposition \ref{cohomology-proposition-vanishing-Noetherian}.
Then $P = H^1(P)[-1]$ and $H^1(P)$ is finite locally free
for example by More on Algebra, Lemma
\ref{more-algebra-lemma-lift-perfect-from-residue-field}.
Since everything is compatible with base change we
also see that (3) holds.
\end{proof}
\begin{lemma}
\label{lemma-pre-genus-one-piece-per-genus}
There is a decomposition into open and closed substacks
$$
\Curvesstack^{h0, 1} = \coprod\nolimits_{g \geq 0} \Curvesstack_g
$$
where each $\Curvesstack_g$ is characterized as follows:
\begin{enumerate}
\item given a family of curves $f : X \to S$ the following are equivalent
\begin{enumerate}
\item the classifying morphism $S \to \Curvesstack$ factors
through $\Curvesstack_g$,
\item $f_*\mathcal{O}_X = \mathcal{O}_S$, this holds after
arbitrary base change, the fibres of $f$ have dimension $1$, and
$R^1f_*\mathcal{O}_X$ is a locally free $\mathcal{O}_S$-module of rank $g$,
\end{enumerate}
\item given a scheme $X$ proper over a field $k$ with $\dim(X) \leq 1$
the following are equivalent
\begin{enumerate}
\item the classifying morphism $\Spec(k) \to \Curvesstack$ factors
through $\Curvesstack_g$,
\item $\dim(X) = 1$, $k = H^0(X, \mathcal{O}_X)$, and
the genus of $X$ is $g$.
\end{enumerate}
\end{enumerate}
\end{lemma}
\begin{proof}
We already have the existence of $\Curvesstack^{h0, 1}$ as an open
substack of $\Curvesstack$ characterized by the conditions of the
lemma not involving $R^1f_*$ or $H^1$, see Lemma \ref{lemma-pre-genus-curves}.
The existence of the decomposition into open and closed substacks
follows immediately from the discussion in Section \ref{section-open}
and Lemma \ref{lemma-genus}. This proves the characterization in (1).
The characterization in (2) follows from the definition of the
genus in Algebraic Curves, Definition \ref{curves-definition-genus}.
\end{proof}
\section{Geometrically reduced curves}
\label{section-geometrically-reduced}
\noindent
There is an open substack of $\Curvesstack$ parametrizing