-
Notifications
You must be signed in to change notification settings - Fork 152
/
cohomology.tex
14494 lines (13298 loc) · 506 KB
/
cohomology.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Cohomology of Sheaves}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this document we work out some topics on cohomology of sheaves
on topological spaces. We mostly work in the generality of modules
over a sheaf of rings and we work with morphisms of ringed spaces.
To see what happens for sheaves on sites take a look at the chapter
Cohomology on Sites, Section \ref{sites-cohomology-section-introduction}.
Basic references are \cite{Godement} and \cite{Iversen}.
\section{Cohomology of sheaves}
\label{section-cohomology-sheaves}
\noindent
Let $X$ be a topological space. Let $\mathcal{F}$ be an abelian sheaf.
We know that the category of abelian sheaves on $X$ has enough injectives, see
Injectives, Lemma \ref{injectives-lemma-abelian-sheaves-space}.
Hence we can choose an injective resolution
$\mathcal{F}[0] \to \mathcal{I}^\bullet$. As is customary we define
\begin{equation}
\label{equation-cohomology}
H^i(X, \mathcal{F}) = H^i(\Gamma(X, \mathcal{I}^\bullet))
\end{equation}
to be the {\it $i$th cohomology group of the abelian sheaf $\mathcal{F}$}.
The family of functors $H^i(X, -)$ forms a universal $\delta$-functor
from $\textit{Ab}(X) \to \textit{Ab}$.
\medskip\noindent
Let $f : X \to Y$ be a continuous map of topological spaces. With
$\mathcal{F}[0] \to \mathcal{I}^\bullet$ as above
we define
\begin{equation}
\label{equation-higher-direct-image}
R^if_*\mathcal{F} = H^i(f_*\mathcal{I}^\bullet)
\end{equation}
to be the {\it $i$th higher direct image of $\mathcal{F}$}.
The family of functors $R^if_*$ forms a universal $\delta$-functor
from $\textit{Ab}(X) \to \textit{Ab}(Y)$.
\medskip\noindent
Let $(X, \mathcal{O}_X)$ be a ringed space. Let $\mathcal{F}$ be an
$\mathcal{O}_X$-module. We know that the category of $\mathcal{O}_X$-modules
on $X$ has enough injectives, see
Injectives, Lemma \ref{injectives-lemma-sheaves-modules-space}.
Hence we can choose an injective resolution
$\mathcal{F}[0] \to \mathcal{I}^\bullet$. As is customary we define
\begin{equation}
\label{equation-cohomology-modules}
H^i(X, \mathcal{F}) = H^i(\Gamma(X, \mathcal{I}^\bullet))
\end{equation}
to be the {\it $i$th cohomology group of $\mathcal{F}$}.
The family of functors $H^i(X, -)$ forms a universal $\delta$-functor
from $\textit{Mod}(\mathcal{O}_X) \to \text{Mod}_{\mathcal{O}_X(X)}$.
\medskip\noindent
Let $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of ringed
spaces. With $\mathcal{F}[0] \to \mathcal{I}^\bullet$ as above
we define
\begin{equation}
\label{equation-higher-direct-image-modules}
R^if_*\mathcal{F} = H^i(f_*\mathcal{I}^\bullet)
\end{equation}
to be the {\it $i$th higher direct image of $\mathcal{F}$}.
The family of functors $R^if_*$ forms a universal $\delta$-functor
from $\textit{Mod}(\mathcal{O}_X) \to \textit{Mod}(\mathcal{O}_Y)$.
\section{Derived functors}
\label{section-derived-functors}
\noindent
We briefly explain how to get right derived functors using resolution
functors. For the unbounded derived functors, please see
Section \ref{section-unbounded}.
\medskip\noindent
Let $(X, \mathcal{O}_X)$ be a ringed space. The category
$\textit{Mod}(\mathcal{O}_X)$ is abelian, see
Modules, Lemma \ref{modules-lemma-abelian}.
In this chapter we will write
$$
K(\mathcal{O}_X) = K(\textit{Mod}(\mathcal{O}_X))
\quad
\text{and}
\quad
D(\mathcal{O}_X) = D(\textit{Mod}(\mathcal{O}_X)).
$$
and similarly for the bounded versions for the triangulated categories
introduced in
Derived Categories, Definition \ref{derived-definition-complexes-notation} and
Definition \ref{derived-definition-unbounded-derived-category}.
By
Derived Categories, Remark \ref{derived-remark-big-abelian-category}
there exists a resolution functor
$$
j = j_X :
K^{+}(\textit{Mod}(\mathcal{O}_X))
\longrightarrow
K^{+}(\mathcal{I})
$$
where $\mathcal{I}$ is the strictly full additive subcategory of
$\textit{Mod}(\mathcal{O}_X)$ consisting of injective sheaves.
For any left exact functor
$F : \textit{Mod}(\mathcal{O}_X) \to \mathcal{B}$
into any abelian category $\mathcal{B}$ we will denote $RF$ the
right derived functor described in
Derived Categories, Section \ref{derived-section-right-derived-functor}
and constructed using the resolution functor $j_X$ just described:
\begin{equation}
\label{equation-RF}
RF = F \circ j_X' : D^{+}(X) \longrightarrow D^{+}(\mathcal{B})
\end{equation}
see
Derived Categories, Lemma \ref{derived-lemma-right-derived-functor}
for notation. Note that we may think of $RF$ as defined on
$\textit{Mod}(\mathcal{O}_X)$,
$\text{Comp}^{+}(\textit{Mod}(\mathcal{O}_X))$,
$K^{+}(X)$, or $D^{+}(X)$
depending on the situation. According to
Derived Categories, Definition \ref{derived-definition-higher-derived-functors}
we obtain the $i$th right derived functor
\begin{equation}
\label{equation-RFi}
R^iF = H^i \circ RF : \textit{Mod}(\mathcal{O}_X) \longrightarrow \mathcal{B}
\end{equation}
so that $R^0F = F$ and $\{R^iF, \delta\}_{i \geq 0}$ is universal
$\delta$-functor, see
Derived Categories, Lemma \ref{derived-lemma-higher-derived-functors}.
\medskip\noindent
Here are two special cases of this construction.
Given a ring $R$ we write $K(R) = K(\text{Mod}_R)$ and
$D(R) = D(\text{Mod}_R)$ and similarly for bounded versions.
For any open $U \subset X$ we have a left exact functor
$
\Gamma(U, -) :
\textit{Mod}(\mathcal{O}_X)
\longrightarrow
\text{Mod}_{\mathcal{O}_X(U)}
$
which gives rise to
\begin{equation}
\label{equation-total-derived-cohomology}
R\Gamma(U, -) :
D^{+}(X)
\longrightarrow
D^{+}(\mathcal{O}_X(U))
\end{equation}
by the discussion above. We set $H^i(U, -) = R^i\Gamma(U, -)$.
If $U = X$ we recover (\ref{equation-cohomology-modules}).
If $f : X \to Y$ is a morphism of ringed spaces, then we have
the left exact functor
$
f_* :
\textit{Mod}(\mathcal{O}_X)
\longrightarrow
\textit{Mod}(\mathcal{O}_Y)
$
which gives rise to the {\it derived pushforward}
\begin{equation}
\label{equation-total-derived-direct-image}
Rf_* :
D^{+}(X)
\longrightarrow
D^{+}(Y)
\end{equation}
The $i$th cohomology sheaf of $Rf_*\mathcal{F}^\bullet$ is denoted
$R^if_*\mathcal{F}^\bullet$ and called the $i$th {\it higher direct image}
in accordance with (\ref{equation-higher-direct-image-modules}).
The two displayed functors above are exact functors
of derived categories.
\medskip\noindent
{\bf Abuse of notation:} When the functor $Rf_*$, or any other
derived functor, is applied to a sheaf $\mathcal{F}$ on $X$ or a complex
of sheaves it is understood that $\mathcal{F}$ has been replaced by a
suitable resolution of $\mathcal{F}$. To facilitate this kind of
operation we will say, given an object
$\mathcal{F}^\bullet \in D(\mathcal{O}_X)$,
that a bounded below complex $\mathcal{I}^\bullet$ of injectives of
$\textit{Mod}(\mathcal{O}_X)$
{\it represents $\mathcal{F}^\bullet$ in the derived category}
if there exists a quasi-isomorphism
$\mathcal{F}^\bullet \to \mathcal{I}^\bullet$. In the same vein the phrase
``let $\alpha : \mathcal{F}^\bullet \to \mathcal{G}^\bullet$ be
a morphism of $D(\mathcal{O}_X)$''
does not mean that $\alpha$ is represented by a
morphism of complexes. If we have an actual morphism of complexes we will
say so.
\section{First cohomology and torsors}
\label{section-h1-torsors}
\begin{definition}
\label{definition-torsor}
Let $X$ be a topological space.
Let $\mathcal{G}$ be a sheaf of (possibly non-commutative) groups on $X$.
A {\it torsor}, or more precisely a {\it $\mathcal{G}$-torsor}, is a sheaf
of sets $\mathcal{F}$ on $X$ endowed with an action
$\mathcal{G} \times \mathcal{F} \to \mathcal{F}$ such that
\begin{enumerate}
\item whenever $\mathcal{F}(U)$ is nonempty the action
$\mathcal{G}(U) \times \mathcal{F}(U) \to \mathcal{F}(U)$
is simply transitive, and
\item for every $x \in X$ the stalk $\mathcal{F}_x$ is nonempty.
\end{enumerate}
A {\it morphism of $\mathcal{G}$-torsors} $\mathcal{F} \to \mathcal{F}'$
is simply a morphism of sheaves of sets compatible with the
$\mathcal{G}$-actions. The {\it trivial $\mathcal{G}$-torsor}
is the sheaf $\mathcal{G}$ endowed with the obvious left
$\mathcal{G}$-action.
\end{definition}
\noindent
It is clear that a morphism of torsors is automatically an isomorphism.
\begin{lemma}
\label{lemma-trivial-torsor}
Let $X$ be a topological space.
Let $\mathcal{G}$ be a sheaf of (possibly non-commutative) groups on $X$.
A $\mathcal{G}$-torsor $\mathcal{F}$ is trivial if and only if
$\mathcal{F}(X) \not = \emptyset$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-torsors-h1}
Let $X$ be a topological space.
Let $\mathcal{H}$ be an abelian sheaf on $X$.
There is a canonical bijection between the set of isomorphism
classes of $\mathcal{H}$-torsors and $H^1(X, \mathcal{H})$.
\end{lemma}
\begin{proof}
Let $\mathcal{F}$ be a $\mathcal{H}$-torsor.
Consider the free abelian sheaf $\mathbf{Z}[\mathcal{F}]$
on $\mathcal{F}$. It is the sheafification of the rule
which associates to $U \subset X$ open the collection of finite
formal sums $\sum n_i[s_i]$ with $n_i \in \mathbf{Z}$
and $s_i \in \mathcal{F}(U)$. There is a natural map
$$
\sigma : \mathbf{Z}[\mathcal{F}] \longrightarrow \underline{\mathbf{Z}}
$$
which to a local section $\sum n_i[s_i]$ associates $\sum n_i$.
The kernel of $\sigma$ is generated by the local section of the form
$[s] - [s']$. There is a canonical map
$a : \Ker(\sigma) \to \mathcal{H}$
which maps $[s] - [s'] \mapsto h$ where $h$ is the local section of
$\mathcal{H}$ such that $h \cdot s = s'$. Consider the pushout diagram
$$
\xymatrix{
0 \ar[r] &
\Ker(\sigma) \ar[r] \ar[d]^a &
\mathbf{Z}[\mathcal{F}] \ar[r] \ar[d] &
\underline{\mathbf{Z}} \ar[r] \ar[d] &
0 \\
0 \ar[r] &
\mathcal{H} \ar[r] &
\mathcal{E} \ar[r] &
\underline{\mathbf{Z}} \ar[r] &
0
}
$$
Here $\mathcal{E}$ is the extension obtained by pushout.
From the long exact cohomology sequence associated to the lower
short exact sequence we obtain an element
$\xi = \xi_\mathcal{F} \in H^1(X, \mathcal{H})$
by applying the boundary operator to $1 \in H^0(X, \underline{\mathbf{Z}})$.
\medskip\noindent
Conversely, given $\xi \in H^1(X, \mathcal{H})$ we can associate to
$\xi$ a torsor as follows. Choose an embedding $\mathcal{H} \to \mathcal{I}$
of $\mathcal{H}$ into an injective abelian sheaf $\mathcal{I}$. We set
$\mathcal{Q} = \mathcal{I}/\mathcal{H}$ so that we have a short exact
sequence
$$
\xymatrix{
0 \ar[r] &
\mathcal{H} \ar[r] &
\mathcal{I} \ar[r] &
\mathcal{Q} \ar[r] &
0
}
$$
The element $\xi$ is the image of a global section $q \in H^0(X, \mathcal{Q})$
because $H^1(X, \mathcal{I}) = 0$ (see
Derived Categories, Lemma \ref{derived-lemma-higher-derived-functors}).
Let $\mathcal{F} \subset \mathcal{I}$ be the subsheaf (of sets) of sections
that map to $q$ in the sheaf $\mathcal{Q}$. It is easy to verify that
$\mathcal{F}$ is a torsor.
\medskip\noindent
We omit the verification that the two constructions given
above are mutually inverse.
\end{proof}
\section{First cohomology and extensions}
\label{section-h1-extensions}
\begin{lemma}
\label{lemma-h1-extensions}
Let $(X, \mathcal{O}_X)$ be a ringed space. Let $\mathcal{F}$ be a sheaf of
$\mathcal{O}_X$-modules. There is a canonical bijection
$$
\Ext^1_{\textit{Mod}(\mathcal{O}_X)}(\mathcal{O}_X, \mathcal{F})
\longrightarrow
H^1(X, \mathcal{F})
$$
which associates to the extension
$$
0 \to \mathcal{F} \to \mathcal{E} \to \mathcal{O}_X \to 0
$$
the image of $1 \in \Gamma(X, \mathcal{O}_X)$ in $H^1(X, \mathcal{F})$.
\end{lemma}
\begin{proof}
Let us construct the inverse of the map given in the lemma. Let
$\xi \in H^1(X, \mathcal{F})$. Choose an injection
$\mathcal{F} \subset \mathcal{I}$ with $\mathcal{I}$ injective in
$\textit{Mod}(\mathcal{O}_X)$.
Set $\mathcal{Q} = \mathcal{I}/\mathcal{F}$.
By the long exact sequence of cohomology, we see that
$\xi$ is the image of a section
$\tilde \xi \in \Gamma(X, \mathcal{Q}) =
\Hom_{\mathcal{O}_X}(\mathcal{O}_X, \mathcal{Q})$.
Now, we just form the pullback
$$
\xymatrix{
0 \ar[r] &
\mathcal{F} \ar[r] \ar@{=}[d] &
\mathcal{E} \ar[r] \ar[d] &
\mathcal{O}_X \ar[r] \ar[d]^{\tilde \xi} &
0 \\
0 \ar[r] &
\mathcal{F} \ar[r] &
\mathcal{I} \ar[r] &
\mathcal{Q} \ar[r] &
0
}
$$
see Homology, Section \ref{homology-section-extensions}.
\end{proof}
\section{First cohomology and invertible sheaves}
\label{section-invertible-sheaves}
\noindent
The Picard group of a ringed space is defined in
Modules, Section \ref{modules-section-invertible}.
\begin{lemma}
\label{lemma-h1-invertible}
Let $(X, \mathcal{O}_X)$ be a ringed space. If all stalks
$\mathcal{O}_{X, x}$ are local rings, then there is a canonical isomorphism
$$
H^1(X, \mathcal{O}_X^*) = \Pic(X).
$$
of abelian groups.
\end{lemma}
\begin{proof}
Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module.
Consider the presheaf $\mathcal{L}^*$ defined by the rule
$$
U \longmapsto \{s \in \mathcal{L}(U)
\text{ such that } \mathcal{O}_U \xrightarrow{s \cdot -} \mathcal{L}_U
\text{ is an isomorphism}\}
$$
This presheaf satisfies the sheaf condition. Moreover, if
$f \in \mathcal{O}_X^*(U)$ and $s \in \mathcal{L}^*(U)$, then clearly
$fs \in \mathcal{L}^*(U)$. By the same token, if $s, s' \in \mathcal{L}^*(U)$
then there exists a unique $f \in \mathcal{O}_X^*(U)$ such that
$fs = s'$. Moreover, the sheaf $\mathcal{L}^*$ has sections locally
by Modules, Lemma \ref{modules-lemma-invertible-is-locally-free-rank-1}.
In other words we
see that $\mathcal{L}^*$ is a $\mathcal{O}_X^*$-torsor. Thus we get
a map
$$
\begin{matrix}
\text{invertible sheaves on }(X, \mathcal{O}_X) \\
\text{ up to isomorphism}
\end{matrix}
\longrightarrow
\begin{matrix}
\mathcal{O}_X^*\text{-torsors} \\
\text{ up to isomorphism}
\end{matrix}
$$
We omit the verification that this is a homomorphism of abelian groups.
By
Lemma \ref{lemma-torsors-h1}
the right hand side is canonically
bijective to $H^1(X, \mathcal{O}_X^*)$.
Thus we have to show this map is injective and surjective.
\medskip\noindent
Injective. If the torsor $\mathcal{L}^*$ is trivial, this means by
Lemma \ref{lemma-trivial-torsor}
that $\mathcal{L}^*$ has a global section.
Hence this means exactly that $\mathcal{L} \cong \mathcal{O}_X$ is
the neutral element in $\Pic(X)$.
\medskip\noindent
Surjective. Let $\mathcal{F}$ be an $\mathcal{O}_X^*$-torsor.
Consider the presheaf of sets
$$
\mathcal{L}_1 : U \longmapsto
(\mathcal{F}(U) \times \mathcal{O}_X(U))/\mathcal{O}_X^*(U)
$$
where the action of $f \in \mathcal{O}_X^*(U)$ on
$(s, g)$ is $(fs, f^{-1}g)$. Then $\mathcal{L}_1$ is a presheaf
of $\mathcal{O}_X$-modules by setting
$(s, g) + (s', g') = (s, g + (s'/s)g')$ where $s'/s$ is the local
section $f$ of $\mathcal{O}_X^*$ such that $fs = s'$, and
$h(s, g) = (s, hg)$ for $h$ a local section of $\mathcal{O}_X$.
We omit the verification that the sheafification
$\mathcal{L} = \mathcal{L}_1^\#$ is an invertible $\mathcal{O}_X$-module
whose associated $\mathcal{O}_X^*$-torsor $\mathcal{L}^*$ is isomorphic
to $\mathcal{F}$.
\end{proof}
\section{Locality of cohomology}
\label{section-locality}
\noindent
The following lemma says there is no ambiguity in defining the cohomology
of a sheaf $\mathcal{F}$ over an open.
\begin{lemma}
\label{lemma-cohomology-of-open}
Let $X$ be a ringed space.
Let $U \subset X$ be an open subspace.
\begin{enumerate}
\item If $\mathcal{I}$ is an injective $\mathcal{O}_X$-module
then $\mathcal{I}|_U$ is an injective $\mathcal{O}_U$-module.
\item For any sheaf of $\mathcal{O}_X$-modules $\mathcal{F}$ we have
$H^p(U, \mathcal{F}) = H^p(U, \mathcal{F}|_U)$.
\end{enumerate}
\end{lemma}
\begin{proof}
Denote $j : U \to X$ the open immersion.
Recall that the functor $j^{-1}$ of restriction to $U$ is a right adjoint
to the functor $j_!$ of extension by $0$, see
Sheaves, Lemma \ref{sheaves-lemma-j-shriek-modules}.
Moreover, $j_!$ is exact. Hence (1) follows from
Homology, Lemma \ref{homology-lemma-adjoint-preserve-injectives}.
\medskip\noindent
By definition $H^p(U, \mathcal{F}) = H^p(\Gamma(U, \mathcal{I}^\bullet))$
where $\mathcal{F} \to \mathcal{I}^\bullet$ is an injective resolution
in $\textit{Mod}(\mathcal{O}_X)$.
By the above we see that $\mathcal{F}|_U \to \mathcal{I}^\bullet|_U$
is an injective resolution in $\textit{Mod}(\mathcal{O}_U)$.
Hence $H^p(U, \mathcal{F}|_U)$ is equal to
$H^p(\Gamma(U, \mathcal{I}^\bullet|_U))$.
Of course $\Gamma(U, \mathcal{F}) = \Gamma(U, \mathcal{F}|_U)$ for
any sheaf $\mathcal{F}$ on $X$.
Hence the equality
in (2).
\end{proof}
\noindent
Let $X$ be a ringed space.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules.
Let $U \subset V \subset X$ be open subsets.
Then there is a canonical {\it restriction mapping}
\begin{equation}
\label{equation-restriction-mapping}
H^n(V, \mathcal{F})
\longrightarrow
H^n(U, \mathcal{F}), \quad
\xi \longmapsto \xi|_U
\end{equation}
functorial in $\mathcal{F}$. Namely, choose any injective
resolution $\mathcal{F} \to \mathcal{I}^\bullet$. The restriction
mappings of the sheaves $\mathcal{I}^p$ give a morphism of complexes
$$
\Gamma(V, \mathcal{I}^\bullet)
\longrightarrow
\Gamma(U, \mathcal{I}^\bullet)
$$
The LHS is a complex representing $R\Gamma(V, \mathcal{F})$
and the RHS is a complex representing $R\Gamma(U, \mathcal{F})$.
We get the map on cohomology groups by applying the functor $H^n$.
As indicated we will use the notation $\xi \mapsto \xi|_U$ to denote this map.
Thus the rule $U \mapsto H^n(U, \mathcal{F})$ is a presheaf of
$\mathcal{O}_X$-modules. This presheaf is customarily denoted
$\underline{H}^n(\mathcal{F})$. We will give another interpretation
of this presheaf in Lemma \ref{lemma-include}.
\begin{lemma}
\label{lemma-kill-cohomology-class-on-covering}
Let $X$ be a ringed space.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules.
Let $U \subset X$ be an open subspace.
Let $n > 0$ and let $\xi \in H^n(U, \mathcal{F})$.
Then there exists an open covering
$U = \bigcup_{i\in I} U_i$ such that $\xi|_{U_i} = 0$ for
all $i \in I$.
\end{lemma}
\begin{proof}
Let $\mathcal{F} \to \mathcal{I}^\bullet$ be an injective resolution.
Then
$$
H^n(U, \mathcal{F}) =
\frac{\Ker(\mathcal{I}^n(U) \to \mathcal{I}^{n + 1}(U))}
{\Im(\mathcal{I}^{n - 1}(U) \to \mathcal{I}^n(U))}.
$$
Pick an element $\tilde \xi \in \mathcal{I}^n(U)$ representing the
cohomology class in the presentation above. Since $\mathcal{I}^\bullet$
is an injective resolution of $\mathcal{F}$ and $n > 0$ we see that
the complex $\mathcal{I}^\bullet$ is exact in degree $n$. Hence
$\Im(\mathcal{I}^{n - 1} \to \mathcal{I}^n) =
\Ker(\mathcal{I}^n \to \mathcal{I}^{n + 1})$ as sheaves.
Since $\tilde \xi$ is a section of the kernel sheaf over $U$
we conclude there exists an open covering $U = \bigcup_{i \in I} U_i$
such that $\tilde \xi|_{U_i}$ is the image under $d$ of a section
$\xi_i \in \mathcal{I}^{n - 1}(U_i)$. By our definition of the
restriction $\xi|_{U_i}$ as corresponding to the class of
$\tilde \xi|_{U_i}$ we conclude.
\end{proof}
\begin{lemma}
\label{lemma-describe-higher-direct-images}
Let $f : X \to Y$ be a morphism of ringed spaces.
Let $\mathcal{F}$ be a $\mathcal{O}_X$-module.
The sheaves $R^if_*\mathcal{F}$ are the sheaves
associated to the presheaves
$$
V \longmapsto H^i(f^{-1}(V), \mathcal{F})
$$
with restriction mappings as in Equation (\ref{equation-restriction-mapping}).
There is a similar statement for $R^if_*$ applied to a
bounded below complex $\mathcal{F}^\bullet$.
\end{lemma}
\begin{proof}
Let $\mathcal{F} \to \mathcal{I}^\bullet$ be an injective resolution.
Then $R^if_*\mathcal{F}$ is by definition the $i$th cohomology sheaf
of the complex
$$
f_*\mathcal{I}^0 \to f_*\mathcal{I}^1 \to f_*\mathcal{I}^2 \to \ldots
$$
By definition of the abelian category structure on $\mathcal{O}_Y$-modules
this cohomology sheaf is the sheaf associated to the presheaf
$$
V
\longmapsto
\frac{\Ker(f_*\mathcal{I}^i(V) \to f_*\mathcal{I}^{i + 1}(V))}
{\Im(f_*\mathcal{I}^{i - 1}(V) \to f_*\mathcal{I}^i(V))}
$$
and this is obviously equal to
$$
\frac{\Ker(\mathcal{I}^i(f^{-1}(V)) \to \mathcal{I}^{i + 1}(f^{-1}(V)))}
{\Im(\mathcal{I}^{i - 1}(f^{-1}(V)) \to \mathcal{I}^i(f^{-1}(V)))}
$$
which is equal to $H^i(f^{-1}(V), \mathcal{F})$
and we win.
\end{proof}
\begin{lemma}
\label{lemma-localize-higher-direct-images}
Let $f : X \to Y$ be a morphism of ringed spaces.
Let $\mathcal{F}$ be an $\mathcal{O}_X$-module.
Let $V \subset Y$ be an open subspace.
Denote $g : f^{-1}(V) \to V$ the restriction of $f$.
Then we have
$$
R^pg_*(\mathcal{F}|_{f^{-1}(V)}) = (R^pf_*\mathcal{F})|_V
$$
There is a similar statement for the
derived image $Rf_*\mathcal{F}^\bullet$ where $\mathcal{F}^\bullet$
is a bounded below complex of $\mathcal{O}_X$-modules.
\end{lemma}
\begin{proof}
First proof. Apply Lemmas \ref{lemma-describe-higher-direct-images}
and \ref{lemma-cohomology-of-open} to see the displayed equality.
Second proof. Choose an injective resolution
$\mathcal{F} \to \mathcal{I}^\bullet$
and use that $\mathcal{F}|_{f^{-1}(V)} \to \mathcal{I}^\bullet|_{f^{-1}(V)}$
is an injective resolution also.
\end{proof}
\begin{remark}
\label{remark-daniel}
Here is a different approach to the proofs of
Lemmas \ref{lemma-kill-cohomology-class-on-covering} and
\ref{lemma-describe-higher-direct-images} above.
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $i_X : \textit{Mod}(\mathcal{O}_X) \to \textit{PMod}(\mathcal{O}_X)$
be the inclusion functor and let $\#$ be the sheafification functor.
Recall that $i_X$ is left exact and $\#$ is exact.
\begin{enumerate}
\item First prove Lemma \ref{lemma-include} below which says that the
right derived functors of $i_X$ are given by
$R^pi_X\mathcal{F} = \underline{H}^p(\mathcal{F})$.
Here is another proof: The equality is clear for $p = 0$.
Both $(R^pi_X)_{p \geq 0}$ and $(\underline{H}^p)_{p \geq 0}$
are delta functors vanishing on injectives, hence both are universal,
hence they are isomorphic. See Homology,
Section \ref{homology-section-cohomological-delta-functor}.
\item A restatement of Lemma \ref{lemma-kill-cohomology-class-on-covering}
is that $(\underline{H}^p(\mathcal{F}))^\# = 0$, $p > 0$ for any sheaf of
$\mathcal{O}_X$-modules $\mathcal{F}$.
To see this is true, use that ${}^\#$ is exact so
$$
(\underline{H}^p(\mathcal{F}))^\# =
(R^pi_X\mathcal{F})^\# =
R^p(\# \circ i_X)(\mathcal{F}) = 0
$$
because $\# \circ i_X$ is the identity functor.
\item Let $f : X \to Y$ be a morphism of ringed spaces.
Let $\mathcal{F}$ be an $\mathcal{O}_X$-module. The presheaf
$V \mapsto H^p(f^{-1}V, \mathcal{F})$ is equal to
$R^p (i_Y \circ f_*)\mathcal{F}$. You can prove this by noticing that
both give universal delta functors as in the argument of (1) above.
Hence Lemma \ref{lemma-describe-higher-direct-images}
says that $R^p f_* \mathcal{F}= (R^p (i_Y \circ f_*)\mathcal{F})^\#$.
Again using that $\#$ is exact a that $\# \circ i_Y$ is the identity
functor we see that
$$
R^p f_* \mathcal{F} =
R^p(\# \circ i_Y \circ f_*)\mathcal{F} =
(R^p (i_Y \circ f_*)\mathcal{F})^\#
$$
as desired.
\end{enumerate}
\end{remark}
\section{Mayer-Vietoris}
\label{section-mayer-vietoris}
\noindent
Below will construct the {\v C}ech-to-cohomology spectral sequence, see
Lemma \ref{lemma-cech-spectral-sequence}.
A special case of that spectral sequence is the Mayer-Vietoris
long exact sequence. Since it is such a basic, useful and easy to understand
variant of the spectral sequence we treat it here separately.
\begin{lemma}
\label{lemma-injective-restriction-surjective}
\begin{slogan}
Injectives are flasque.
\end{slogan}
Let $X$ be a ringed space.
Let $U' \subset U \subset X$ be open subspaces.
For any injective $\mathcal{O}_X$-module $\mathcal{I}$ the
restriction mapping
$\mathcal{I}(U) \to \mathcal{I}(U')$ is surjective.
\end{lemma}
\begin{proof}
Let $j : U \to X$ and $j' : U' \to X$ be the open immersions.
Recall that $j_!\mathcal{O}_U$ is the extension by zero of
$\mathcal{O}_U = \mathcal{O}_X|_U$, see
Sheaves, Section \ref{sheaves-section-open-immersions}.
Since $j_!$ is a left adjoint to restriction we see that
for any sheaf $\mathcal{F}$ of $\mathcal{O}_X$-modules
$$
\Hom_{\mathcal{O}_X}(j_!\mathcal{O}_U, \mathcal{F})
=
\Hom_{\mathcal{O}_U}(\mathcal{O}_U, \mathcal{F}|_U)
=
\mathcal{F}(U)
$$
see Sheaves, Lemma \ref{sheaves-lemma-j-shriek-modules}.
Similarly, the sheaf $j'_!\mathcal{O}_{U'}$ represents the
functor $\mathcal{F} \mapsto \mathcal{F}(U')$.
Moreover there
is an obvious canonical map of $\mathcal{O}_X$-modules
$$
j'_!\mathcal{O}_{U'} \longrightarrow j_!\mathcal{O}_U
$$
which corresponds to the restriction mapping
$\mathcal{F}(U) \to \mathcal{F}(U')$ via Yoneda's lemma
(Categories, Lemma \ref{categories-lemma-yoneda}). By the description
of the stalks of the sheaves
$j'_!\mathcal{O}_{U'}$, $j_!\mathcal{O}_U$
we see that the displayed map above is injective (see lemma cited above).
Hence if $\mathcal{I}$ is an injective $\mathcal{O}_X$-module,
then the map
$$
\Hom_{\mathcal{O}_X}(j_!\mathcal{O}_U, \mathcal{I})
\longrightarrow
\Hom_{\mathcal{O}_X}(j'_!\mathcal{O}_{U'}, \mathcal{I})
$$
is surjective, see
Homology, Lemma \ref{homology-lemma-characterize-injectives}.
Putting everything together we obtain the lemma.
\end{proof}
\begin{lemma}[Mayer-Vietoris]
\label{lemma-mayer-vietoris}
Let $X$ be a ringed space. Suppose that $X = U \cup V$ is a
union of two open subsets. For every $\mathcal{O}_X$-module $\mathcal{F}$
there exists a long exact cohomology sequence
$$
0 \to
H^0(X, \mathcal{F}) \to
H^0(U, \mathcal{F}) \oplus H^0(V, \mathcal{F}) \to
H^0(U \cap V, \mathcal{F}) \to
H^1(X, \mathcal{F}) \to \ldots
$$
This long exact sequence is functorial in $\mathcal{F}$.
\end{lemma}
\begin{proof}
The sheaf condition says that the kernel of
$(1, -1) : \mathcal{F}(U) \oplus \mathcal{F}(V) \to \mathcal{F}(U \cap V)$
is equal to the image of $\mathcal{F}(X)$ by the first map
for any abelian sheaf $\mathcal{F}$.
Lemma \ref{lemma-injective-restriction-surjective} above implies that the map
$(1, -1) : \mathcal{I}(U) \oplus \mathcal{I}(V) \to \mathcal{I}(U \cap V)$
is surjective whenever $\mathcal{I}$ is an injective $\mathcal{O}_X$-module.
Hence if $\mathcal{F} \to \mathcal{I}^\bullet$ is an injective resolution
of $\mathcal{F}$, then we get a short exact sequence of complexes
$$
0 \to
\mathcal{I}^\bullet(X) \to
\mathcal{I}^\bullet(U) \oplus \mathcal{I}^\bullet(V) \to
\mathcal{I}^\bullet(U \cap V) \to
0.
$$
Taking cohomology gives the result (use
Homology, Lemma \ref{homology-lemma-long-exact-sequence-cochain}).
We omit the proof of the functoriality of the sequence.
\end{proof}
\begin{lemma}[Relative Mayer-Vietoris]
\label{lemma-relative-mayer-vietoris}
Let $f : X \to Y$ be a morphism of ringed spaces.
Suppose that $X = U \cup V$ is a union of two open subsets.
Denote $a = f|_U : U \to Y$, $b = f|_V : V \to Y$, and
$c = f|_{U \cap V} : U \cap V \to Y$.
For every $\mathcal{O}_X$-module $\mathcal{F}$
there exists a long exact sequence
$$
0 \to
f_*\mathcal{F} \to
a_*(\mathcal{F}|_U) \oplus b_*(\mathcal{F}|_V) \to
c_*(\mathcal{F}|_{U \cap V}) \to
R^1f_*\mathcal{F} \to \ldots
$$
This long exact sequence is functorial in $\mathcal{F}$.
\end{lemma}
\begin{proof}
Let $\mathcal{F} \to \mathcal{I}^\bullet$ be an injective resolution
of $\mathcal{F}$. We claim that we
get a short exact sequence of complexes
$$
0 \to
f_*\mathcal{I}^\bullet \to
a_*\mathcal{I}^\bullet|_U \oplus b_*\mathcal{I}^\bullet|_V \to
c_*\mathcal{I}^\bullet|_{U \cap V} \to
0.
$$
Namely, for any open $W \subset Y$, and for any $n \geq 0$ the
corresponding sequence of groups of sections over $W$
$$
0 \to
\mathcal{I}^n(f^{-1}(W)) \to
\mathcal{I}^n(U \cap f^{-1}(W))
\oplus \mathcal{I}^n(V \cap f^{-1}(W)) \to
\mathcal{I}^n(U \cap V \cap f^{-1}(W)) \to
0
$$
was shown to be short exact in the proof of Lemma \ref{lemma-mayer-vietoris}.
The lemma follows by taking cohomology sheaves and using the fact that
$\mathcal{I}^\bullet|_U$ is an injective resolution of $\mathcal{F}|_U$
and similarly for $\mathcal{I}^\bullet|_V$, $\mathcal{I}^\bullet|_{U \cap V}$
see Lemma \ref{lemma-cohomology-of-open}.
\end{proof}
\section{The {\v C}ech complex and {\v C}ech cohomology}
\label{section-cech}
\noindent
Let $X$ be a topological space.
Let $\mathcal{U} : U = \bigcup_{i \in I} U_i$ be an open covering,
see Topology, Basic notion (\ref{topology-item-covering}).
As is customary we denote
$U_{i_0\ldots i_p} = U_{i_0} \cap \ldots \cap U_{i_p}$ for the
$(p + 1)$-fold intersection of members of $\mathcal{U}$.
Let $\mathcal{F}$ be an abelian presheaf on $X$.
Set
$$
\check{\mathcal{C}}^p(\mathcal{U}, \mathcal{F})
=
\prod\nolimits_{(i_0, \ldots, i_p) \in I^{p + 1}}
\mathcal{F}(U_{i_0\ldots i_p}).
$$
This is an abelian group. For
$s \in \check{\mathcal{C}}^p(\mathcal{U}, \mathcal{F})$ we denote
$s_{i_0\ldots i_p}$ its value in $\mathcal{F}(U_{i_0\ldots i_p})$.
Note that if $s \in \check{\mathcal{C}}^1(\mathcal{U}, \mathcal{F})$
and $i, j \in I$ then $s_{ij}$ and $s_{ji}$ are both elements
of $\mathcal{F}(U_i \cap U_j)$ but there is no imposed
relation between $s_{ij}$ and $s_{ji}$. In other words, we are {\it not}
working with alternating cochains (these will be defined
in Section \ref{section-alternating-cech}). We define
$$
d : \check{\mathcal{C}}^p(\mathcal{U}, \mathcal{F})
\longrightarrow
\check{\mathcal{C}}^{p + 1}(\mathcal{U}, \mathcal{F})
$$
by the formula
\begin{equation}
\label{equation-d-cech}
d(s)_{i_0\ldots i_{p + 1}}
=
\sum\nolimits_{j = 0}^{p + 1}
(-1)^j
s_{i_0\ldots \hat i_j \ldots i_{p + 1}}|_{U_{i_0\ldots i_{p + 1}}}
\end{equation}
It is straightforward to see that $d \circ d = 0$. In other words
$\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F})$ is a complex.
\begin{definition}
\label{definition-cech-complex}
Let $X$ be a topological space.
Let $\mathcal{U} : U = \bigcup_{i \in I} U_i$ be an open covering.
Let $\mathcal{F}$ be an abelian presheaf on $X$.
The complex $\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F})$
is the {\it {\v C}ech complex} associated to $\mathcal{F}$ and the
open covering $\mathcal{U}$. Its cohomology groups
$H^i(\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}))$ are
called the {\it {\v C}ech cohomology groups} associated to
$\mathcal{F}$ and the covering $\mathcal{U}$.
They are denoted $\check H^i(\mathcal{U}, \mathcal{F})$.
\end{definition}
\begin{lemma}
\label{lemma-cech-h0}
Let $X$ be a topological space.
Let $\mathcal{F}$ be an abelian presheaf on $X$.
The following are equivalent
\begin{enumerate}
\item $\mathcal{F}$ is an abelian sheaf and
\item for every open covering $\mathcal{U} : U = \bigcup_{i \in I} U_i$
the natural map
$$
\mathcal{F}(U) \to \check{H}^0(\mathcal{U}, \mathcal{F})
$$
is bijective.
\end{enumerate}
\end{lemma}
\begin{proof}
This is true since the sheaf condition is exactly that
$\mathcal{F}(U) \to \check{H}^0(\mathcal{U}, \mathcal{F})$
is bijective for every open covering.
\end{proof}
\begin{lemma}
\label{lemma-cech-trivial}
Let $X$ be a topological space. Let $\mathcal{F}$ be an abelian presheaf on $X$.
Let $\mathcal{U} : U = \bigcup_{i \in I} U_i$ be an open covering. If
$U_i = U$ for some $i \in I$, then the extended {\v C}ech complex
$$
\mathcal{F}(U) \to \check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F})
$$
obtained by putting $\mathcal{F}(U)$ in degree $-1$ with differential given by
the canonical map of $\mathcal{F}(U)$ into
$\check{\mathcal{C}}^0(\mathcal{U}, \mathcal{F})$
is homotopy equivalent to $0$.
\end{lemma}
\begin{proof}
Fix an element $i \in I$ with $U = U_i$. Observe that
$U_{i_0 \ldots i_p} = U_{i_0 \ldots \hat i_j \ldots i_p}$ if $i_j = i$.
Let us define a homotopy
$$
h :
\prod\nolimits_{i_0 \ldots i_{p + 1}} \mathcal{F}(U_{i_0 \ldots i_{p + 1}})
\longrightarrow
\prod\nolimits_{i_0 \ldots i_p} \mathcal{F}(U_{i_0 \ldots i_p})
$$
by the rule
$$
h(s)_{i_0 \ldots i_p} = s_{i i_0 \ldots i_p}
$$
In other words, $h : \prod_{i_0} \mathcal{F}(U_{i_0}) \to \mathcal{F}(U)$
is projection onto the factor $\mathcal{F}(U_i) = \mathcal{F}(U)$
and in general the map $h$ equals the projection onto the factors
$\mathcal{F}(U_{i i_1 \ldots i_{p + 1}}) =
\mathcal{F}(U_{i_1 \ldots i_{p + 1}})$.
We compute
\begin{align*}
(dh + hd)(s)_{i_0 \ldots i_p}
& =
\sum\nolimits_{j = 0}^p
(-1)^j
h(s)_{i_0 \ldots \hat i_j \ldots i_p}
+
d(s)_{i i_0 \ldots i_p}\\
& =
\sum\nolimits_{j = 0}^p
(-1)^j
s_{i i_0 \ldots \hat i_j \ldots i_p}
+
s_{i_0 \ldots i_p}
+
\sum\nolimits_{j = 0}^p
(-1)^{j + 1}
s_{i i_0 \ldots \hat i_j \ldots i_p} \\
& =
s_{i_0 \ldots i_p}
\end{align*}
This proves the identity map is homotopic to zero as desired.
\end{proof}