-
Notifications
You must be signed in to change notification settings - Fork 90
/
pretransfo.m
542 lines (510 loc) · 18.9 KB
/
pretransfo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
function [At,b,c,K,prep,origcoeff] = pretransfo(At,b,c,K,pars)
% [At,b,c,K,prep] = pretransfo(At,b,c,K)
%
% PRETRANSFO Checks data and then transforms into internal SeDuMi format.
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi
% Nearly complete rewrite
% Copyright (c) 2013 Michael C. Grant
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
% -------------------------------------------------------------------------
% Make sure that all fields exist in K, and verify that they are valid
% -------------------------------------------------------------------------
if ~isfield(K,'f') || isempty(K.f)
K.f = 0;
elseif numel(K.f) ~= 1 || K.f ~= floor(K.f) || K.f < 0 || ~isreal(K.f)
error('K.f should be nonnegative integer')
end
if ~isfield(K,'l') || isempty(K.l)
K.l = 0;
elseif K.l ~= floor(K.l) || K.l < 0 || ~isreal(K.l)
error('K.l should be nonnegative integer')
end
if ~isfield(K,'q') || ~nnz(K.q)
K.q = zeros(1,0);
else
K.q = K.q(:)';
if any(K.q ~= floor(K.q)) || any(K.q<2) || ~isreal(K.q)
error('K.q should contain only integers bigger than 1')
end
end
if ~isfield(K,'r') || ~nnz(K.r)
K.r = zeros(1,0);
else
K.r = K.r(:)';
if any(K.r ~= floor(K.r)) || any(K.r<3) || ~isreal(K.r)
error('K.r should contain only integers bigger than 2')
end
end
if ~isfield(K,'s') || ~nnz(K.s)
K.s = zeros(1,0);
else
K.s = K.s(:)';
if any(K.s ~= floor(K.s)) || any(K.s<1) || ~isreal(K.s)
error('K.s should contain only positive integers')
end
end
% As an alternative to the 'scomplex' flag, I've added a 'z' parameter
% containing a list of Hermitian semidefinite cone sizes. For now, this
% is just translated to 'scomplex' for you. In the future, we may use
% this internally *instead* of scomplex or rsdpN.
if ~isfield(K,'z') || ~nnz(K.z)
K.z = zeros(1,0);
else
K.z = K.z(:)';
if any(K.z ~= floor(K.z)) || any(K.z<1) || ~isreal(K.z)
error('K.z should contain only positive integers')
end
end
N_f = K.f;
N_l = K.l;
N_fl = N_f + N_l;
L_q = length(K.q);
N_q = sum(K.q);
L_r = length(K.r);
N_r = sum(K.r);
N_qr = N_q + N_r;
L_qr = L_q + L_r;
L_s = length(K.s);
L_z = length(K.z);
L_sz = L_s + L_z;
N_s = sum((K.s).^2);
N_z = sum((K.z).^2);
N_sz = N_s + N_z;
L_qrsz = L_qr + L_sz;
N_flqr = N_fl + N_qr;
N = N_flqr + N_sz;
if ~isfield(K,'ycomplex') || isempty(K.ycomplex)
K.ycomplex = zeros(1,0);
else
K.ycomplex = sort(K.ycomplex(:))';
K.ycomplex(find(~diff(K.ycomplex))+1) = [];
if any(K.ycomplex ~= floor(K.ycomplex)) || any(K.ycomplex<1)
error('K.ycomplex should contain only positive integers');
elseif any(K.ycomplex > numel(b))
error('Elements of K.ycomplex are out of range');
end
end
if ~isfield(K,'xcomplex') || isempty(K.xcomplex)
K.xcomplex = zeros(1,0);
else
K.xcomplex = sort(K.xcomplex(:))';
K.xcomplex(find(~diff(K.xcomplex))+1) = [];
if any(K.xcomplex ~= floor(K.xcomplex)) || any(K.xcomplex<1)
error('K.xcomplex should contain only positive integers');
elseif any(K.xcomplex>N_flqr)
error('Elements of K.xcomplex are out of range');
end
end
if ~isfield(K,'scomplex') || isempty(K.scomplex)
K.scomplex = zeros(1,0);
else
K.scomplex = sort(K.scomplex(:))';
K.scomplex(find(~diff(K.scomplex))+1) = [];
if any(K.scomplex~=floor(K.scomplex)) || any(K.scomplex<1)
error('K.scomplex should contain only positive integers');
elseif any(K.scomplex>L_s)
error('Elements of K.scomplex are out of range');
end
end
if L_z
K.s = [ K.s, K.z ];
K.scomplex = [ K.scomplex, L_s + 1 : L_sz ];
K.z = zeros(1,0);
L_s = L_s + L_z;
N_s = N_s + N_z;
L_z = 0; %#ok
N_z = 0; %#ok
end
% -------------------------------------------------------------------------
% Verify the size and validity of At, b, and c
% N = # variables
% -------------------------------------------------------------------------
% SeDuMi assumes that if At is not consistent with K but At' is, that the
% user supplied the transpose of the coefficient matrix. This introduces a
% rare ambiguity in the case where At happens to be square. Past versions
% of SeDuMi would not have allowed this, instead rejecting the case where
% m >= N; however, with complex variables, the situation is not quite as
% clear, and there may technically be cases where m >= N is acceptable.
if ndims(At) > 2 %#ok
error('A must be a matrix');
elseif nnz(isnan(At)) || nnz(isinf(At))
error('A contains NaN or Inf');
elseif size(At,1) == N
% nothing
elseif size(At,2) == N
At = At';
else
error('(At,K) size mismatch');
end
if all(size(b)>1)
error('Parameter b must be a vector');
elseif any(isnan(b)) || any(isinf(b))
error('b contains NaN or Inf');
elseif length(b) ~= size(At,2)
error('(At,b) size mismatch');
else
b = b(:);
end
if all(size(c)>1)
error('Parameter c must be a vector');
elseif any(isnan(c)) || any(isinf(c))
error('c contains NaN or Inf');
elseif length(c) ~= N
error('(c,K) size mismatch');
else
c = c(:);
end
% -------------------------------------------------------------------------
% Save the standardized data for further use if needed
% -------------------------------------------------------------------------
if isfield(pars,'errors') && pars.errors==1
origcoeff.At=At;
origcoeff.c=c;
origcoeff.b=b;
origcoeff.K=K;
else
origcoeff=[];
end
% -------------------------------------------------------------------------
% Flag diagonal SDP blocks for removal
% -------------------------------------------------------------------------
% There is some serious MATLAB trickery here (if I do say so myself) that
% merits explanation. "spattern" contains the indices of symbolically
% nonzero elements of the dual variable z = c - At * y. This is a single
% vector across all LMI constraints, so "sblk" tells us which indices
% belong to which constraints. The "rem" statement is what determines if
% a particular element is off-diagonal. If there is even one off-diagonal
% element in an SDP, then its corresponding element of "sdiag" is false.
%
% This new version of the analysis replaces the old preprocessSDP(), and
% seems inexpensive enough to apply to all LMIs regardless of size/count.
% The previous version was applied more sparingly.
%
% In theory one could do a more complex analysis of the block structure of
% an LMI, potentially breaking a larger into smaller ones. But this would
% likely be significantly more expensive.
if L_s && ( ~isfield(pars,'sdp') || pars.sdp )
ssiz = (K.s).^2;
strt = cumsum([1,ssiz(1:end-1)]);
sblk = zeros(1,N_s);
sblk(strt) = 1;
sblk = cumsum(sblk);
spattern = find(c(N_flqr+1:N)~=0|any(At(N_flqr+1:N,:),2))';
sblk = sblk(spattern);
sblk = sblk(rem(spattern-strt(sblk),K.s(sblk)+1)~=0);
sdiag = true(1,L_s);
sdiag(sblk) = false;
else
% Even if we disable SDP processing, we're going to move 1x1 SDPs into
% the nonnegative variable block. It just doesn't make sense to deploy
% all of that SDP machinery for nonnegative variables.
sdiag = K.s == 1;
end
% -------------------------------------------------------------------------
% Handle K.ycomplex by splitting apart the complex constraints into pairs
% of real constraints
% -------------------------------------------------------------------------
if ~isempty(K.ycomplex)
b = [ real(b) ; imag(b(K.ycomplex)) ];
At = [ At, 1j * At(:,K.ycomplex) ];
else
b = real(b);
end
% -------------------------------------------------------------------------
% Find the locations of the the complex data, so we can convert into
% SeDuMi's internal format, which uses only MATLAB's real representation.
% -------------------------------------------------------------------------
% Strictly speaking, nonnegative variables, the first variable in a Lorentz
% cone, and the first two variables in a rotated Lorentz cone are real. But
% But SeDuMi has allowed them all to be specified as complex; the imaginary
% portions are interpreted as free variables. We have kept that behavior.
% This code replaces whichcpx.c in its entirety. It actually fixes a bug in
% rotated Lorentz cone handling that was probably never exercised.
if isempty(K.xcomplex) && isempty(K.scomplex)
K.fcplx = zeros(1,0);
K.qcplx = zeros(1,0);
K.rcplx = zeros(1,0);
scplx = false(1,L_s);
sreal = ~sdiag;
K.rsdpN = L_s;
N_fc = 0;
K.cdim = 0;
else
xc = K.xcomplex;
tt = xc <= N_fl;
K.fcplx = xc(tt);
xc = xc(~tt) - N_fl;
tt = xc <= N_q;
K.qcplx = xc(tt);
xc = xc(~tt) - N_q;
tt = xc <= N_r;
K.rcplx = xc(tt);
if ~isempty(K.qcplx)
ndxs = cumsum([1,K.q(1:end-1)]);
t2 = any(bsxfun(@eq,K.qcplx,ndxs'),1);
K.fcplx = [ K.fcplx, K.qcplx(t2) + N_fl ];
K.qcplx(t2) = [];
t2 = sum(bsxfun(@gt,K.qcplx,ndxs'),1);
K.q = K.q + full(sparse(1,t2,1,1,L_q));
K.qcplx = K.qcplx + (1:length(K.qcplx));
N_q = N_q + length(K.qcplx);
end
if ~isempty(K.rcplx)
ndxs = cumsum([1,K.r(1:end-1)]);
t2 = any(bsxfun(@eq,K.rcplx,[ndxs,ndxs+1]'),1);
K.fcplx = [ K.fcplx, K.rcplx(t2) + N_fl + N_q ];
K.rcplx(t2) = [];
t2 = sum(bsxfun(@gt,K.rcplx,ndxs'),1);
K.r = K.r + full(sparse(1,t2,1,1,L_r));
% This 2*t2 offset is required because QR makes two accesses
% each of the first two elements of a rotated Lorentz cone.
K.rcplx = K.rcplx + (1:length(K.rcplx)) + 2 * t2;
N_r = N_r + length(K.rcplx);
end
N_fc = length(K.fcplx);
N_f = N_f + N_fc;
scplx = false(1,L_s);
scplx(K.scomplex&~sdiag) = true;
sreal = ~scplx & ~sdiag;
K.rsdpN = nnz(sreal);
K.cdim = length(K.xcomplex) + sum(K.s(scplx).^2);
end
% -------------------------------------------------------------------------
% We have significantly rewritten this section of the code. This section
% constructs a sparse matrix that represents the following transformations:
% --- Free variables split into differences of nonnegative variables; OR
% --- Free variables placed in a Lorentz-cone
% --- Rotated lorentz cones translated to standard Lorentz cones
% --- Lorentz cones rearranged to trace block + norm-bound blocks
% --- Conversion of diagonal SDPs to nonnegative variables
% --- SDP coefficients moved to the lower triangle for increased sparsity
% This code replaces the rotlorenz, qreshape, and vectril MEX files.
% -------------------------------------------------------------------------
newL = 0;
newQ = zeros(1,0);
ii = {}; jj = {}; vv = {};
% Split free variables into the difference of nonnegatives
if ~isfield( pars, 'free' ) || pars.free == 2 && L_qrsz
pars.free = 1;
end
if N_f && ~pars.free
jt = [ 1 : K.f, K.fcplx ; 1 : K.f, K.fcplx ];
vt = [ ones(1,K.f), -1j*ones(1,N_fc) ; -ones(1,K.f), 1j*ones(1,N_fc) ];
ii{end+1} = 1 : 2 * N_f;
jj{end+1} = jt(:)';
vv{end+1} = vt(:)';
newL = 2 * N_f;
prep.freeL = N_f;
end
% Copy nonnegative variables without change
if K.l
ii{end+1} = newL + 1 : newL + K.l;
jj{end+1} = K.f + 1 : K.f + K.l;
vv{end+1} = ones(1,K.l);
newL = newL + K.l;
end
% Convert diagonal SDPs to nonnegative variables
if any(sdiag)
dsize = K.s(sdiag);
sdpL = sum(dsize);
prep.sdiag = dsize;
jstrt = cumsum([N_flqr+1,K.s(1:end-1).^2]);
jstrt = jstrt(sdiag);
istrt = cumsum([1,dsize(1:end-1)]);
dsize = dsize + 1;
dblks = cumsum(full(sparse(1,istrt,1,1,sdpL)));
ii{end+1} = newL + 1 : newL + sdpL;
jj{end+1} = jstrt(dblks) + dsize(dblks) .* ( ( 1 : sdpL ) - istrt(dblks) );
vv{end+1} = ones(1,sdpL);
newL = newL + sdpL;
end
% Stuff free variables into a Lorentz cone
tr_off = newL;
nb_off = newL + L_qr;
if N_f && pars.free
tr_off = tr_off + 1;
nb_off = nb_off + 1;
ii{end+1} = nb_off + 1 : nb_off + N_f;
jj{end+1} = [ 1 : K.f, K.fcplx ];
vv{end+1} = [ ones(1,K.f), -1j*ones(1,N_fc) ];
nb_off = nb_off + K.f;
newQ = N_f + 1;
end
% Rearrange Lorentz cones to trace block + norm-bound blocks
if N_q
ndxs = cumsum([1,K.q(1:end-1)]);
it = zeros(1,N_q);
it(ndxs) = tr_off + 1 : tr_off + L_q;
it(it==0) = nb_off + 1 : nb_off + ( N_q - L_q );
jt = K.f + K.l + 1 : K.f + K.l + N_q;
vt = ones(1,N_q);
if ~isempty(K.qcplx)
jt = jt - cumsum(full(sparse(1,K.qcplx,1,1,N_q)));
vt(K.qcplx) = -1j;
end
ii{end+1} = it(:)';
jj{end+1} = jt;
vv{end+1} = vt;
tr_off = tr_off + L_q;
nb_off = nb_off + N_q - L_q;
end
% Transform rotated Lorentz cones to standard Lorentz cones, and rearrange
% to trace block + norm-bound blocks.
if N_r
ndxr = cumsum([1,K.r(1:end-1)]);
ndxp = ndxr + 2*(0:L_r-1);
it = zeros(1,N_r+2*L_r);
it(ndxp) = tr_off + 1 : tr_off + L_r;
it(ndxp+1) = -1;
it(ndxp+2) = it(ndxp);
it(it==0) = nb_off + 1 : nb_off + ( N_r - L_r );
it(ndxp+1) = it(ndxp+3);
jt = [ K.f + K.l + N_q + 1, ones(1,N_r+2*L_r-1) ];
jt([ndxp+1,ndxp+3]) = 0;
vt = ones(1,N_r+2*L_r);
vt([ndxp,ndxp+1,ndxp+2]) = sqrt(0.5);
vt(ndxp+3) = -sqrt(0.5);
if ~isempty(K.rcplx)
jt(K.rcplx) = 0;
vt(K.rcplx) = -1j;
end
ii{end+1} = it;
jj{end+1} = cumsum(jt);
vv{end+1} = vt;
nb_off = nb_off + N_r - L_r;
end
% Replace non-diagonal real SDP coefficients with tril(X) + tril(X',-1).
% This cuts the number of nonzeros approximately in half.
if K.rsdpN
dsize = K.s(sreal);
sdpL = sum(dsize.^2);
jstrt = cumsum([N_flqr+1,K.s(1:end-1).^2]);
jstrt = jstrt(sreal);
istrt = cumsum([1,dsize(1:end-1).^2]);
dblks = cumsum(full(sparse(1,istrt,1,1,sdpL)));
istrt = istrt + nb_off;
dsize = dsize(dblks);
istrt = istrt(dblks);
jndxs = ( nb_off + 1 : nb_off + sdpL ) - istrt;
cols = floor(jndxs ./ dsize);
rows = jndxs - dsize .* cols;
ii{end+1} = max(rows,cols) + min(rows,cols) .* dsize + istrt;
jj{end+1} = jndxs + jstrt(dblks);
vv{end+1} = ones(1,sdpL);
nb_off = nb_off + sdpL;
clear dsize jstrt istrt dblks jndxs rows cols
end
% Replace Hermitian SDP coefficients with tril(X) + tril(X',-1). This one's
% a bit trickier because we have the real and complex values interleaved,
% and the imaginary values along the diagonal are zero.
if K.rsdpN < length(K.s)
dsize = K.s(scplx);
jsize = dsize .^ 2;
sdpL = 2 * sum(jsize);
jstrt = cumsum([N_flqr+1,K.s(1:end-1).^2]);
jstrt = jstrt(scplx);
bstrt = cumsum([1,2*jsize(1:end-1)]);
dblks = cumsum(full(sparse(1,bstrt,1,1,sdpL)));
istrt = bstrt + nb_off;
dsize = dsize(dblks);
istrt = istrt(dblks);
bndxs = ( nb_off + 1 : nb_off + sdpL ) - istrt;
cols = floor( bndxs ./ dsize );
rows = bndxs - dsize .* cols;
imgv = cols >= dsize;
cols = cols - imgv .* dsize;
indxs = max(rows,cols) + min(rows,cols) .* dsize + imgv .* jsize(dblks) + istrt;
vals = 1 + imgv .* (-1 + 1j * (1 - 2 * (rows > cols) ) );
keep = ~imgv | ( rows ~= cols );
jndxs = rows + cols .* dsize + jstrt(dblks);
ii{end+1} = indxs(keep);
jj{end+1} = jndxs(keep);
vv{end+1} = vals(keep);
clear dsize jsize jstrt bstrt istrt bndxs rows cols vals imgv keep
end
% Update free, nonnegative, and Lorentz variable counts
K.f = 0;
K.l = newL;
K.q = [ newQ, K.q, K.r ];
K.r = zeros(0,1);
K.s = [ K.s(:,~scplx&~sdiag), K.s(scplx&~sdiag) ];
K.rsdpN = nnz(~scplx&~sdiag);
K.N = K.l + sum(K.q) + sum(K.s(1:K.rsdpN).^2)+2*sum(K.s(K.rsdpN+1:end).^2);
% Create the artificial (x0,z0) variable for the self-dual model by
% appending a zero row to At and c. This is accomplished in QR by adding
% 1 to all of the row indices created above.
K.N = K.N + 1;
K.l = K.l + 1;
K.m = length(b);
% Transform At, c
% The transformation matrix QR does not satisfy QR'*QR=I. But it does, in
% fact, serve as a reverse transformation:
% --- For Lorentz cones, QR applies a permutation; QR' reverses it.
% --- For rotated Lorentz cones, QR applies a unitary, self-adjoint
% rotation on the first two variables, so QR' reverses it.
% --- For split free variables, QR creates the positive and negative
% parts; QR' combines them back together.
% --- For free variables placed in a Lorentz cone, QR moves them to the
% Lorentz cone block, adding an extra epigraph variable. QR' moves
% them back and drops the extra variable.
% --- For semidefinte cones, QR adds the strict upper triangle to the
% strict lower triangle; QR' copies the strict lower triangle to the
% strict upper triangle, ensuring symmetry.
% --- QR adds a row for the self-dual variable; QR' removes it.
[dummy,ndxs] = sort(cellfun(@(x) x(1),jj)); %#ok
QR = sparse( horzcat(ii{ndxs})+1, horzcat(jj{ndxs}), horzcat(vv{ndxs}), K.N, length(c) );
At = real( sparse( QR * At ) );
c = real( sparse( QR * c ) );
b = sparse( b );
prep.QR = QR;
clear ii jj vv
% -------------------------------------------------------------------------
% Now K has field K.{l,q,s}
% Generate a more detailed description of cone K:
% Let K.blkstart(i):K.blkstart(i+1)-1 give the index range of block i.
% Compute maxN=max(order), len=sum(order) for LORENTZ, real PSD, herm PSD
% yields: K.{l,q,s,rsdpN,blkstart,rLen,hLen,qMaxn,rMaxn,hMaxn}
% -------------------------------------------------------------------------
Ksr = K.s(1:K.rsdpN);
Ksc = K.s(K.rsdpN+1:end);
K.blkstart = cumsum([K.l+1,length(K.q)+length(K.r),K.q-1,Ksr.^2,2*Ksc.^2]);
K.rLen = sum(Ksr);
K.hLen = sum(Ksc);
K.qMaxn = max([0,K.q]);
K.rMaxn = max([0,Ksr]);
K.hMaxn = max([0,Ksc]);
K.mainblks = K.blkstart(cumsum([1 1 length(K.q)]));
K.qblkstart = K.blkstart(2:2+length(K.q)); % Also include blkend
K.sblkstart = K.blkstart(2+length(K.q):end);
K.lq = K.mainblks(end)-1;