-
Notifications
You must be signed in to change notification settings - Fork 90
/
auxgivens.c
191 lines (183 loc) · 7.1 KB
/
auxgivens.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/*
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include "givens.h"
/* ************************************************************
PROCEDURE givensrot - apply sequence of givens rotations to
a vector.
INPUT
g - length n: each entry is a givens rotation [x, y;y,-x], x^2+y^2=1.
We apply first g[n-1] to z[n-1:n], up to g[0] to z[0:1].
n - order of g, i.e. number of givens rotations.
UPDATED
z - length n+1 vector, to be rotated n times.
************************************************************ */
void givensrot(double *z, const twodouble *g, const mwIndex n)
{
twodouble gi;
double z1, z2;
mwIndex i;
z2 = z[n];
for(i = n; i > 0; i--){
gi = g[i-1];
z1 = z[i-1];
/* ------------------------------------------------------------
[z1NEW; [x, y; [z1;
z2NEW] := y, -x] * z2]
------------------------------------------------------------ */
z[i] = gi.y * z1 - gi.x * z2; /* z2NEW */
z2 = gi.x * z1 + gi.y * z2; /* z1NEW, is z2 in iter --i */
}
z[0] = z2;
}
/* ************************************************************
PROCEDURE prpigivensrot - apply sequence of givens rotations to
a vector. Complex case.
INPUT
g - length n: each entry is a givens rotation [conj(x), y;y,-x],
|x|^2+y^2=1. y is real.
We apply first g[n-1] to z[n-1:n], up to g[0] to z[0:1].
n - order of g, i.e. number of givens rotations.
UPDATED
z,zpi - length n+1 vector, to be rotated n times.
************************************************************ */
void prpigivensrot(double *z,double *zpi, const tridouble *g, const mwIndex n)
{
tridouble gi;
double z1, z2, z1im,z2im;
mwIndex i;
z2 = z[n];
z2im = zpi[n];
for(i = n; i > 0; i--){
gi = g[i-1];
z1 = z[i-1];
z1im = zpi[i-1];
/* ------------------------------------------------------------
[z1NEW; [conj(x), y; [z1;
z2NEW] := y, -x] * z2]
------------------------------------------------------------ */
/* z2NEW = y*z1 - x*z2 , y is real. */
z[i] = gi.y * z1 - gi.x * z2 + gi.xim * z2im;
zpi[i] = gi.y * z1im - gi.x * z2im - gi.xim * z2;
/* z1NEW, is z2 in iter --i. z1NEW = conj(x)*z1 + y*z2, y is real. */
z2 = gi.x * z1 + gi.xim * z1im + gi.y * z2;
z2im = gi.x * z1im - gi.xim * z1 + gi.y * z2im;
}
z[0] = z2;
zpi[0] = z2im;
}
/* ************************************************************
PROCEDURE givensrotuj - apply sequence of givens rotations to
a vector, whose last affected entry is now 0. Typical for
re-inserting columns in a U-factor. Same as "givensrot", except that
z[n]=0 by assumption on input.
INPUT
g - length n: each entry is a givens rotation [x, y;y,-x], x^2+y^2=1.
We apply first g[n-1] to z[n-1:n], up to g[0] to z[0:1].
n - order of g, i.e. number of givens rotations.
UPDATED
z - length n+1 vector, to be rotated n times. On input, z[n] = 0
by assumption (actual contents irrelevant).
************************************************************ */
void givensrotuj(double *z, const twodouble *g, const mwIndex n)
{
twodouble gi;
double z1, z2;
mwIndex i;
if(n < 1)
return;
/* ------------------------------------------------------------
[z2; [x, y; [z[n-1];
z[n]] := y, -x] * 0] = z[n-1] * [x;y]
------------------------------------------------------------ */
z2 = z[n-1];
z[n] = z2 * ((g+n-1)->y);
z2 *= (g+n-1)->x;
for(i = n-1; i > 0; i--){
gi = g[i-1];
z1 = z[i-1];
/* ------------------------------------------------------------
[z1NEW; [x, y; [z1;
z2NEW] := y, -x] * z2]
------------------------------------------------------------ */
z[i] = gi.y * z1 - gi.x * z2; /* z2NEW */
z2 = gi.x * z1 + gi.y * z2; /* z1NEW, is z2 in iter --i */
}
z[0] = z2;
}
/* ************************************************************
PROCEDURE prpigivensrotuj - apply sequence of givens rotations to
a vector, whose last affected entry is now 0, and the preceding
entry is real. On output, the last effected entry will be real.
Typical for re-inserting columns in a U-factor. Same as "givensrot",
except that z[n-1] is real and z[n]=0 by assumption on input.
INPUT
g - length n: each entry is a givens rotation [conj(x), y;y,-x],
|x|^2+y^2=1, y is real.
We apply first g[n-1] to z[n-1:n], up to g[0] to z[0:1].
n - order of g, i.e. number of givens rotations.
UPDATED
z - length n+1 vector, to be rotated n times. On input,
{zpi[n-1],z[n],zpi[n]} = 0 by assumption (actual contents irrelevant).
************************************************************ */
void prpigivensrotuj(double *z,double *zpi, const tridouble *g, const mwIndex n)
{
tridouble gi;
double z1, z2, z1im,z2im;
mwIndex i;
if(n < 1)
return;
/* ------------------------------------------------------------
[z2; [conj(x), y; [z[n-1];
z[n]] := y, -x] * 0] = z[n-1] * [conj(x);y],
where z[n-1] is real.
------------------------------------------------------------ */
z2 = z[n-1];
z[n] = z2 * ((g+n-1)->y);
z2im = -z2 * (g+n-1)->xim; /* z[n-1] * conj(x) */
z2 *= (g+n-1)->x;
for(i = n-1; i > 0; i--){
gi = g[i-1];
z1 = z[i-1];
z1im = zpi[i-1];
/* ------------------------------------------------------------
[z1NEW; [conj(x), y; [z1;
z2NEW] := y, -x] * z2]
------------------------------------------------------------ */
/* z2NEW = y*z1 - x*z2 , y is real. */
z[i] = gi.y * z1 - gi.x * z2 + gi.xim * z2im;
zpi[i] = gi.y * z1im - gi.x * z2im - gi.xim * z2;
/* z1NEW, is z2 in iter --i. z1NEW = conj(x)*z1 + y*z2, y is real. */
z2 = gi.x * z1 + gi.xim * z1im + gi.y * z2;
z2im = gi.x * z1im - gi.xim * z1 + gi.y * z2im;
}
z[0] = z2;
zpi[0] = z2im;
}