-
Notifications
You must be signed in to change notification settings - Fork 90
/
adendotd.c
244 lines (237 loc) · 10.8 KB
/
adendotd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
% Ad = Adendotd(dense, d, sparAd, Ablk, blkstart)
% ADENDOTD Computes d[k]'*Aj[k] for Lorentz blocks that are to be factored
% by dpr1fact.
%
% SEE ALSO sedumi
% ********** INTERNAL FUNCTION OF SEDUMI **********
function Ad = Adendotd(dense, d, sparAd, Ablk, blkstart)
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include <string.h>
#include "mex.h"
#include "blksdp.h"
#define AD_OUT plhs[0]
#define NPAROUT 1
#define DENSE_IN prhs[0]
#define D_IN prhs[1]
#define ADOTD_IN prhs[2]
#define ABLK_IN prhs[3]
#define BLKSTART_IN prhs[4]
#define NPARIN 5
/* ************************************************************
PROCEDURE adendotd
INPUT
aden - dense.A(:,dense.l+1:end) sparse m x (nq+nden) matrix,
with aden.jc[0] possibly nonzero.
adotd - sparse m x nq array, has ai[k]'*d[k] for k in q, where
the ai's are the sparse part of the A-matrix. We still need to
add contribution from dense part, resulting in Ad.
d1 - length |K.q| vector. We will use d1(q) entries.
d2 - length firstQ+(sym(K.q)-|K.q|) vector. We use entries d2(dencols),
where dencols >=firstQ.
q - length nq array: dense lorentz blocks
dencols - length nden array: dense lorentz norm-bound columns. These
are global subscripts, at or beyond firstQ.
blkend - length nq array, listing 1-beyond-last subscript of Lorentz
norm bound blocks listed in q.
nq - number of dense lorentz blocks
nden - number of dense lorentz norm-bound columns
fwork - length m vector.
UPDATED
ad - sparse m x nq. ad.ir and ad.jc are INPUTS, ad.pr is OUTPUT.
On output, has (ai[k]+Adeni[k])'*d[k] for k in q.
************************************************************ */
void adendotd(jcir ad,jcir adotd,jcir aden,const double *d1,const double *d2,
const mwIndex *q,const mwIndex *dencols,
const mwIndex *blkend,const mwIndex nq,const mwIndex nden, double *fwork)
{
mwIndex inz, i,j,k;
const mwIndex *aden2jc;
double dj;
/* ------------------------------------------------------------
Initialize (Lorentz norm-bound part):
1) aden2jc(0:nden) points to dense columns
2) j is next dense column to handle, inz point to next nonzero
------------------------------------------------------------ */
j = 0;
aden2jc = aden.jc + nq; /* jump over Lorentz trace columns*/
inz = aden2jc[j];
for(k = 0; k < nq; k++){
/* ------------------------------------------------------------
Set fwork = all-0;
------------------------------------------------------------ */
for(i = ad.jc[k]; i < ad.jc[k+1]; i++) /* fwork = all-0 */
fwork[ad.ir[i]] = 0.0;
/* ------------------------------------------------------------
Let fwork = adotd(:,k) (Contribution from SPARSE part of A)
------------------------------------------------------------ */
for(i = adotd.jc[k]; i < adotd.jc[k+1]; i++)
fwork[adotd.ir[i]] = adotd.pr[i];
/* ------------------------------------------------------------
Let fwork += d1(q(k)) * aden(:,k) (Contribution Lorentz-trace)
------------------------------------------------------------ */
dj = d1[q[k]];
for(i = aden.jc[k]; i < aden.jc[k+1]; i++)
fwork[aden.ir[i]] += dj * aden.pr[i];
/* ------------------------------------------------------------
Add contribution of dense Lorentz-norm-bound columns, i.e.
let fwork += sum_j{d2(dencols[j]) * Aden(:,j) | dencols[j]<blkend[k]}
------------------------------------------------------------ */
for(; j < nden; j++){
if((i = dencols[j]) >= blkend[k])
break; /* Break if beyond block k */
dj = d2[i];
for(; inz < aden2jc[j+1]; inz++)
fwork[aden.ir[inz]] += dj * aden.pr[inz];
}
/* ------------------------------------------------------------
Store ad(:,k) = fwork
------------------------------------------------------------ */
for(i = ad.jc[k]; i < ad.jc[k+1]; i++)
ad.pr[i] = fwork[ad.ir[i]];
}
}
/* ============================================================
MAIN: MEXFUNCTION
============================================================ */
/* ************************************************************
PROCEDURE mexFunction - Entry for Matlab
************************************************************ */
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
const mxArray *MY_FIELD;
mwIndex i,j,firstQ, m,nden, nl, nq, lorN;
mwIndex *q, *dencols, *blkend;
const double *d1, *d2, *qPr, *dencolsPr, *blkstartPr;
double *fwork;
jcir ad, aden,adotd;
/* ------------------------------------------------------------
Check for proper number of arguments
------------------------------------------------------------ */
mxAssert(nrhs >= NPARIN, "adendotd requires more input arguments");
mxAssert(nlhs <= NPAROUT, "adendotd produces less output arguments");
/* ------------------------------------------------------------
DISASSEMBLE dense structure: dense.{cols,l,q,A}
------------------------------------------------------------ */
mxAssert(mxIsStruct(DENSE_IN),"dense should be a structure.");
MY_FIELD = mxGetField(DENSE_IN,(mwIndex)0,"l"); /* dense.l */
mxAssert( MY_FIELD != NULL, "Missing field dense.l.");
nl = (mwIndex) mxGetScalar(MY_FIELD); /* double to mwIndex */
MY_FIELD = mxGetField(DENSE_IN,(mwIndex)0,"q"); /* dense.q */
mxAssert( MY_FIELD != NULL, "Missing field dense.q.");
nq = mxGetM(MY_FIELD) * mxGetN(MY_FIELD);
qPr = mxGetPr(MY_FIELD);
MY_FIELD = mxGetField(DENSE_IN,(mwIndex)0,"cols"); /* dense.cols */
mxAssert( MY_FIELD != NULL, "Missing field dense.cols.");
nden = mxGetM(MY_FIELD) * mxGetN(MY_FIELD) - nl - nq;
mxAssert(nden >= 0, "dense.q size mismatch.");
dencolsPr = mxGetPr(MY_FIELD) + nl + nq; /* Skip LP and Q-tr*/
MY_FIELD = mxGetField(DENSE_IN,(mwIndex)0,"A"); /* dense.A */
mxAssert( MY_FIELD != NULL, "Missing field dense.A.");
mxAssert(mxIsSparse(MY_FIELD), "dense.A must be sparse");
m = mxGetM(MY_FIELD);
mxAssert(mxGetN(MY_FIELD) - nl == nq + nden, "dense.A size mismatch");
aden.jc = mxGetJc(MY_FIELD) + nl; /* Skip LP part */
aden.ir = mxGetIr(MY_FIELD);
aden.pr = mxGetPr(MY_FIELD);
/* ------------------------------------------------------------
DISASSEMBLE d structure: d.{q1,q2}
------------------------------------------------------------ */
mxAssert(mxIsStruct(D_IN), "d should be a structure.");
MY_FIELD = mxGetField(D_IN,(mwIndex)0,"q1"); /* d.q1 */
mxAssert( MY_FIELD != NULL, "Missing field d.q1.");
lorN = mxGetM(MY_FIELD) * mxGetN(MY_FIELD);
d1 = mxGetPr(MY_FIELD);
MY_FIELD = mxGetField(D_IN,(mwIndex)0,"q2"); /* d.q2 */
mxAssert( MY_FIELD != NULL, "Missing field d.q2.");
d2 = mxGetPr(MY_FIELD);
/* ------------------------------------------------------------
Get inputs adotd (contains Ad from sparse A in dense.qs blocks),
blkstart (partitions d2 into Lorentz norm-bound blocks)
------------------------------------------------------------ */
mxAssert(mxIsSparse(ADOTD_IN), "sparAD must be sparse"); /* adotd */
mxAssert((m == mxGetM(ADOTD_IN) || nq <= 0) && nq == mxGetN(ADOTD_IN), "Size mismatch sparAD");
adotd.jc = mxGetJc(ADOTD_IN);
adotd.ir = mxGetIr(ADOTD_IN);
adotd.pr = mxGetPr(ADOTD_IN);
blkstartPr = mxGetPr(BLKSTART_IN); /* blkstart */
mxAssert(lorN +1 == mxGetM(BLKSTART_IN) * mxGetN(BLKSTART_IN), "blkstart size mismatch");
/* ------------------------------------------------------------
Create working arrays q(nq), dencols(nden), fwork(m),
blkend(nq)
------------------------------------------------------------ */
q = (mwIndex *) mxCalloc(MAX(1,nq), sizeof(mwIndex));
dencols = (mwIndex *) mxCalloc(MAX(1,nden), sizeof(mwIndex));
blkend = (mwIndex *) mxCalloc(MAX(1,nq), sizeof(mwIndex));
fwork = (double *) mxCalloc(MAX(m,1), sizeof(double));
/* ------------------------------------------------------------
Convert to integer C-style; dencols, q, blkstart(q+1)
------------------------------------------------------------ */
for(i = 0; i < nden; i++){
j = (mwIndex) dencolsPr[i];
mxAssert(j>0,"");
dencols[i] = --j;
}
for(i = 0; i < nq; i++){
j = (mwIndex) qPr[i];
mxAssert(j>0,"");
q[i] = --j;
}
/* ------------------------------------------------------------
Let firstQ point to subscript of 1st Lorentz norm-bound variable
------------------------------------------------------------ */
firstQ = (mwIndex) blkstartPr[0]; /* double to mwIndex */
mxAssert(firstQ>0,"");
--firstQ; /* Fortran to C */
for(i = 0; i < nq; i++){
j = (mwIndex) blkstartPr[q[i] + 1]; /* F-double to C-mwIndex */
mxAssert(j>0,"");
blkend[i] = --j;
}
/* ------------------------------------------------------------
Create output: Ad = Ablk
------------------------------------------------------------ */
AD_OUT = mxDuplicateArray(ABLK_IN); /* Ad = Ablk */
ad.jc = mxGetJc(AD_OUT);
ad.ir = mxGetIr(AD_OUT);
ad.pr = mxGetPr(AD_OUT);
/* ------------------------------------------------------------
The real job is done here:
------------------------------------------------------------ */
adendotd(ad,adotd,aden,d1,d2 - firstQ,q,dencols,blkend,nq,nden, fwork);
/* ------------------------------------------------------------
Release working arrays
------------------------------------------------------------ */
mxFree(fwork);
mxFree(dencols);
mxFree(q);
}