forked from coldenate/corner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
108 lines (89 loc) · 3.34 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import random
import numpy as np
import pickle
import json
import os
from flask import Flask, render_template, request
from flask_ngrok import run_with_ngrok
import nltk
from keras.models import load_model
from nltk.stem import WordNetLemmatizer
print('imports are done')
lemmatizer = WordNetLemmatizer()
print('lemmatizer is inititntintintitn')
# dirname = os.path.dirname(__file__)
# data_filename = os.path.join(dirname, 'intents.json')
# file path inits because my fp system is broken
# ----------------------------------------------
dirname = os.path.dirname(__file__) # This can be used throughout the file
modelpath = os.path.join(dirname, 'chatbot_model.h5')
intentspath = os.path.join(dirname, 'intents.json')
wordspath = os.path.join(dirname, 'words.pkl')
classespath = os.path.join(dirname, 'classes.pkl')
# ----------------------------------------------
# init chat
model = load_model(modelpath)
intents = json.loads(open(intentspath).read())
words = pickle.load(open(wordspath, "rb"))
classes = pickle.load(open(classespath, "rb"))
app = Flask(__name__)
# run_with_ngrok(app) -Use this option if you have ngrok and you want to expose your chatbot to the real world
# app = Flask(__name__)
# # run_with_ngrok(app)
@app.route("/")
def home():
return render_template("index.html")
@app.route("/get", methods=["POST"])
def chatbot_response():
msg = request.form["msg"]
if msg.startswith('my name is'):
name = msg[11:]
ints = predict_class(msg, model)
res1 = getResponse(ints, intents)
return res1.replace("{n}",name)
elif msg.startswith('hi my name is'):
name = msg[14:]
ints = predict_class(msg, model)
res1 = getResponse(ints, intents)
return res1.replace("{n}",name)
else:
ints = predict_class(msg, model)
return getResponse(ints, intents)
# chat functionalities
def clean_up_sentence(sentence):
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
# return bag of words array: 0 or 1 for each word in the bag that exists in the sentence
def bow(sentence, words, show_details=True):
# tokenize the pattern
sentence_words = clean_up_sentence(sentence)
# bag of words - matrix of N words, vocabulary matrix
bag = [0] * len(words)
for s in sentence_words:
for i, w in enumerate(words):
if w == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
if show_details:
print("found in bag: %s" % w)
return np.array(bag)
def predict_class(sentence, model):
# filter out predictions below a threshold
p = bow(sentence, words, show_details=False)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.25
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
return [{"intent": classes[r[0]], "probability": str(r[1])} for r in results]
def getResponse(ints, intents_json):
tag = ints[0]["intent"]
list_of_intents = intents_json["intents"]
for i in list_of_intents:
if i["tag"] == tag:
result = random.choice(i["responses"])
break
return result
if __name__ == "__main__":
app.run()