-
Notifications
You must be signed in to change notification settings - Fork 5
Home
CubeFit does a tolerable job estimating the underlying galaxy and fitting the relevant positions most of the time. However there are a few areas where there is room for improvement. Some areas may be looking forward to
Currently, extracting a SN spectrum is a two-step process:
- CubeFit is given a 3-d PSF model and ADR (atmospheric differential refraction) for each epoch (based on the photometric channel). This model is fixed throughout the the cubefit process.
- ExtractStar is given the galaxy-subtracted cubes (now only containing the SN) and fits a 3-d PSF model (including ADR) when extracting the SN spectrum.
This means that the PSF model used by CubeFit is not necessarily consistent with the model used by ExtractStar. In fact, CubeFit estimates the SN spectrum in each epoch as part of the fitting process, but that estimate might disagree with the final estimate from ExtractStar due to differences in the PSF model. ExtractStar also fits the SN position and ADR, so these can also be different. Inconsistencies in SN position is probably the most pressing issue: CubeFit has access to more information about the SN position than ExtractStar, because it fits all epochs simultaneously, but this information is basically thrown away when the SN position is refit in ExtractStar.
What ExtractStar does could be integrated into CubeFit, perhaps by iterating, alternating between position fitting and ADR/PSF fitting.
One thing I would have liked to look into is autoencoders as a means of reducing the parameter space characterizing galaxy shapes. See for example: http://people.eecs.berkeley.edu/~jregier/publications/regier2015deep.pdf
CubeFit has several optimization steps. All use the L-BFGS-B optimiation algorithm with analytic gradients supplied. This works pretty well, but it would be worth investigating other methods. It would also be worth checking if an even lower convergence tolerance gives acceptable results.
CubeFit is a refactored version of code known as DDT, mainly written by Seb Bongard. DDT was written in the Yorick programming language. The original DDT code can still be found in the SNFactory CVS repository, but is no longer used in the pipeline. This wiki has a couple pages that are notes written when translating the DDT code. These are not really relevant any more but are kept around for posterity:
- DDT Yorick Layout: Notes taken while trying to understand DDT.
- Yorick Notes: A few differences between Yorick and Python.