-
Notifications
You must be signed in to change notification settings - Fork 0
/
elastic_transform.py
78 lines (62 loc) · 3.05 KB
/
elastic_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import cv2 as cv
from scipy.ndimage.interpolation import map_coordinates
from scipy.ndimage.filters import gaussian_filter
import matplotlib.pyplot as plt
def elastic_transform(image, alpha, sigma, alpha_affine, random_state=None):
""" Function to perform elastic transformation for data augmentation
Elastic deformation of images as described in [Simard2003]_ (with modifications).
[Simard2003] Simard, Steinkraus and Platt, "Best Practices for
Convolutional Neural Networks applied to Visual Document Analysis", in
Proc. of the International Conference on Document Analysis and
Recognition, 2003.
Original code taken from:
https://www.kaggle.com/bguberfain/elastic-transform-for-data-augmentation
"""
if random_state is None:
random_state = np.random.RandomState(None)
shape = image.shape
shape_size = shape[:2]
# Perform random affine transformations
center_square = np.float32(shape_size) // 2
square_size = min(shape_size) // 3
pts1 = np.float32([center_square + square_size, [center_square[0]+square_size, center_square[1]-square_size], center_square - square_size])
pts2 = pts1 + random_state.uniform(-alpha_affine, alpha_affine, size=pts1.shape).astype(np.float32)
M = cv.getAffineTransform(pts1, pts2)
image = cv.warpAffine(image, M, shape_size[::-1], borderMode=cv.BORDER_REFLECT_101)
dx = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma) * alpha
dy = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma) * alpha
x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2]))
indices = np.reshape(y+dy, (-1, 1)), np.reshape(x+dx, (-1, 1)), np.reshape(z, (-1, 1))
return map_coordinates(image, indices, order=1, mode='reflect').reshape(shape)
def draw_grid(im, grid_size):
"""
Function to draw a grid on the image.
"""
# Draw grid lines
for i in range(0, im.shape[1], grid_size):
cv.line(im, (i, 0), (i, im.shape[0]), color=(255,))
for j in range(0, im.shape[0], grid_size):
cv.line(im, (0, j), (im.shape[1], j), color=(255,))
def get_elastic_transforms(imag,
imag_mask,
alpha = 1,
sigma = 0.098,
alpha_affine = 0.098):
"""
"""
# Merge images into separete channels (shape will be (cols, rols, 2))
im_merge = np.concatenate((imag[...,None], imag_mask[...,None]), axis=2)
alpha1 = im_merge.shape[1] *alpha
sigma1 = im_merge.shape[1] * sigma
alpha_affine1 = im_merge.shape[1] * alpha_affine
# Apply transformation on image
im_merge_t = elastic_transform(im_merge, alpha1, sigma1, alpha_affine1)
# Split image and mask
im_t = im_merge_t[...,0]
im_mask_t = im_merge_t[...,1]
return im_t, im_mask_t
def show_result(imag,imag_mask):
im_t, im_mask_t = get_elastic_transforms(imag, imag_mask)
plt.figure(figsize = (8,8))
plt.imshow(np.c_[np.r_[imag, imag_mask], np.r_[im_t, im_mask_t]], cmap='gray')