-
Notifications
You must be signed in to change notification settings - Fork 0
/
application.py
35 lines (31 loc) · 1.39 KB
/
application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import pickle
from flask import Flask, request,jsonify,render_template
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
application = Flask(__name__)
app = application
ridge_model = pickle.load(open('C:\\Users\\shrey\\Documents\\Coding\\Machine learning algorithm\\ML Project 1\\models\\ridge.pkl','rb'))
standard_scalar = pickle.load(open('C:\\Users\\shrey\\Documents\\Coding\\Machine learning algorithm\\ML Project 1\\models\\scaler.pkl','rb'))
@app.route("/")
def index():
return render_template('index.html')
@app.route("/predictdata",methods = ['POST','GET'])
def predict_datapoint():
if request.method=='POST':
Temperature=float(request.form.get('Temperature'))
RH=float(request.form.get('RH'))
Ws= float(request.form.get('Ws'))
Rain=float(request.form.get('Rain'))
FFMC=float(request.form.get('FFMC'))
DMC=float(request.form.get('DMC'))
ISI=float(request.form.get('ISI'))
Classes=float(request.form.get('Classes'))
Region= float(request.form.get('Region'))
new_data_scaled = standard_scalar.transform([[Temperature,RH,Ws,Rain,FFMC,DMC,ISI,Classes,Region]])
result = ridge_model.predict(new_data_scaled)
return render_template('home.html',result=result[0])
else:
return render_template('home.html')
if __name__=="__main__":
app.run(host='0.0.0.0')