-
Notifications
You must be signed in to change notification settings - Fork 497
/
supervised_finetuning.py
991 lines (872 loc) · 44.2 KB
/
supervised_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
# -*- coding: utf-8 -*-
# Copyright 2023 XuMing([email protected]) and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, LLaMA, Bloom, ...) on a json file or a dataset.
part of code is modified from https://github.com/shibing624/textgen
"""
import math
import os
from dataclasses import dataclass, field
from glob import glob
from types import MethodType
from typing import Literal, Optional, Tuple
import torch
import torch.nn as nn
from datasets import load_dataset
from loguru import logger
from peft import LoraConfig, TaskType, get_peft_model, PeftModel, prepare_model_for_kbit_training
from transformers import (
AutoConfig,
BloomForCausalLM,
AutoModel,
AutoModelForCausalLM,
LlamaForCausalLM,
BloomTokenizerFast,
AutoTokenizer,
HfArgumentParser,
Trainer,
Seq2SeqTrainingArguments,
set_seed,
BitsAndBytesConfig,
DataCollatorForSeq2Seq,
)
from transformers.models.llama.modeling_llama import (
LlamaAttention,
apply_rotary_pos_emb,
repeat_kv,
LlamaFlashAttention2,
Cache
)
from transformers.trainer import TRAINING_ARGS_NAME
from transformers.trainer_pt_utils import LabelSmoother
from transformers.utils.versions import require_version
try:
from transformers.integrations import is_deepspeed_zero3_enabled
except ImportError: # https://github.com/huggingface/transformers/releases/tag/v4.33.1
from transformers.deepspeed import is_deepspeed_zero3_enabled
is_flash_attn_2_available = False
try:
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import pad_input, unpad_input
is_flash_attn_2_available = True
except ImportError:
is_flash_attn_2_available = False
from template import get_conv_template
MODEL_CLASSES = {
"bloom": (AutoConfig, BloomForCausalLM, BloomTokenizerFast),
"chatglm": (AutoConfig, AutoModel, AutoTokenizer),
"llama": (AutoConfig, LlamaForCausalLM, AutoTokenizer),
"baichuan": (AutoConfig, AutoModelForCausalLM, AutoTokenizer),
"auto": (AutoConfig, AutoModelForCausalLM, AutoTokenizer),
}
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_type: str = field(
default=None,
metadata={"help": "Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())}
)
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
load_in_8bit: bool = field(default=False, metadata={"help": "Whether to load the model in 8bit mode or not."})
load_in_4bit: bool = field(default=False, metadata={"help": "Whether to load the model in 4bit mode or not."})
tokenizer_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The tokenizer for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
model_revision: Optional[str] = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
hf_hub_token: Optional[str] = field(default=None, metadata={"help": "Auth token to log in with Hugging Face Hub."})
use_fast_tokenizer: bool = field(
default=False,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
torch_dtype: Optional[str] = field(
default="float16",
metadata={
"help": (
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
"dtype will be automatically derived from the model's weights."
),
"choices": ["auto", "bfloat16", "float16", "float32"],
},
)
device_map: Optional[str] = field(
default="auto",
metadata={"help": "Device to map model to. If `auto` is passed, the device will be selected automatically. "},
)
trust_remote_code: bool = field(
default=True,
metadata={"help": "Whether to trust remote code when loading a model from a remote checkpoint."},
)
rope_scaling: Optional[Literal["linear", "dynamic"]] = field(
default=None,
metadata={"help": "Adopt scaled rotary positional embeddings."}
)
flash_attn: Optional[bool] = field(
default=False,
metadata={"help": "Enable FlashAttention-2 for faster training."}
)
shift_attn: Optional[bool] = field(
default=False,
metadata={"help": "Enable shifted sparse attention (S^2-Attn) proposed by LongLoRA."}
)
neft_alpha: Optional[float] = field(
default=0,
metadata={"help": "The alpha parameter to control the noise magnitude in NEFTune. value can be 5."}
)
def __post_init__(self):
if self.model_type is None:
raise ValueError(
"You must specify a valid model_type to run training. Available model types are " + ", ".join(
MODEL_CLASSES.keys()))
if self.model_name_or_path is None:
raise ValueError("You must specify a valid model_name_or_path to run training.")
@dataclass
class DataArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file_dir: Optional[str] = field(default=None, metadata={"help": "The train jsonl data file folder."})
validation_file_dir: Optional[str] = field(default=None, metadata={"help": "The evaluation jsonl file folder."})
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=1,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
def __post_init__(self):
if self.max_train_samples is not None and 0 < self.max_train_samples <= 1000:
logger.warning("You may set max_train_samples = -1 to run all samples in production.")
@dataclass
class ScriptArguments:
use_peft: bool = field(default=True, metadata={"help": "Whether to use peft"})
train_on_inputs: bool = field(default=False, metadata={"help": "Whether to train on inputs"})
target_modules: Optional[str] = field(default="all")
lora_rank: Optional[int] = field(default=8)
lora_dropout: Optional[float] = field(default=0.05)
lora_alpha: Optional[float] = field(default=32.0)
modules_to_save: Optional[str] = field(default=None)
peft_path: Optional[str] = field(default=None, metadata={"help": "The path to the peft model"})
qlora: bool = field(default=False, metadata={"help": "Whether to use qlora"})
model_max_length: int = field(
default=512,
metadata={"help": "Maximum model context length. suggest: 8192 * 4, 8192 * 2, 8192, 4096, 2048, 1024, 512"}
)
template_name: Optional[str] = field(default="vicuna", metadata={"help": "The prompt template name."})
def __post_init__(self):
if self.model_max_length < 60:
raise ValueError("You must specify a valid model_max_length >= 60 to run training")
class SavePeftModelTrainer(Trainer):
"""
Trainer for lora models
"""
def save_model(self, output_dir=None, _internal_call=False):
"""Save the LoRA model."""
os.makedirs(output_dir, exist_ok=True)
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
self.model.save_pretrained(output_dir)
def save_model(model, tokenizer, args):
"""Save the model and the tokenizer."""
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
def save_model_zero3(model, tokenizer, args, trainer):
"""Save the model for deepspeed zero3.
refer https://github.com/lm-sys/FastChat/blob/main/fastchat/train/train_lora.py#L209
"""
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
state_dict_zero3 = trainer.model_wrapped._zero3_consolidated_16bit_state_dict()
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(args.output_dir, state_dict=state_dict_zero3)
tokenizer.save_pretrained(output_dir)
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
def find_all_linear_names(peft_model, int4=False, int8=False):
"""Find all linear layer names in the model. reference from qlora paper."""
cls = torch.nn.Linear
if int4 or int8:
import bitsandbytes as bnb
if int4:
cls = bnb.nn.Linear4bit
elif int8:
cls = bnb.nn.Linear8bitLt
lora_module_names = set()
for name, module in peft_model.named_modules():
if isinstance(module, cls):
# last layer is not add to lora_module_names
if 'lm_head' in name:
continue
if 'output_layer' in name:
continue
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
return sorted(lora_module_names)
# Modified from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
def llama_torch_attn_forward(
self: "LlamaAttention",
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional["Cache"] = None,
output_attentions: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
past_key_value = getattr(self, "past_key_value", past_key_value)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
num_groups = q_len // groupsz
def shift(state: torch.Tensor) -> torch.Tensor:
state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim)
state = torch.cat(
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2:].roll(-groupsz // 2, dims=1)),
dim=2,
)
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2)
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
if attention_mask is not None:
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states) # (bsz, :, seq_len, :) or (bsz*n_group, :, groupsz, :)
attn_output = attn_output.transpose(1, 2).contiguous()
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
attn_output = torch.cat(
(
attn_output[:, :, : self.num_heads // 2],
attn_output[:, :, self.num_heads // 2:].roll(groupsz // 2, dims=1),
)
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Modified from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
def llama_flash_attn_forward(
self: "LlamaFlashAttention2",
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional["Cache"] = None,
output_attentions: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# LlamaFlashAttention2 attention does not support output_attentions
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# FlashAttention requires the input to have the shape (bsz, seq_len, n_heads, head_dim)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
past_key_value = getattr(self, "past_key_value", past_key_value)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
query_states = query_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
key_states = key_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
value_states = value_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
dropout_rate = self.attention_dropout if self.training else 0.0
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning("The input hidden states seems to be silently casted in float32.")
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
num_groups = q_len // groupsz
def shift(state: torch.Tensor) -> torch.Tensor:
state = torch.cat(
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2:].roll(-groupsz // 2, dims=1)),
dim=2,
)
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim)
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
if attention_mask is not None:
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1)
attn_output: torch.Tensor = self._flash_attention_forward(
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
attn_output = torch.cat(
(
attn_output[:, :, : self.num_heads // 2],
attn_output[:, :, self.num_heads // 2:].roll(groupsz // 2, dims=1),
)
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def apply_llama_patch() -> None:
LlamaAttention.forward = llama_torch_attn_forward
LlamaFlashAttention2.forward = llama_flash_attn_forward
def main():
parser = HfArgumentParser((ModelArguments, DataArguments, Seq2SeqTrainingArguments, ScriptArguments))
model_args, data_args, training_args, script_args = parser.parse_args_into_dataclasses()
logger.info(f"Model args: {model_args}")
logger.info(f"Data args: {data_args}")
logger.info(f"Training args: {training_args}")
logger.info(f"Script args: {script_args}")
logger.info(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set seed before initializing model.
set_seed(training_args.seed)
config_class, model_class, tokenizer_class = MODEL_CLASSES[model_args.model_type]
# Load tokenizer
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"trust_remote_code": model_args.trust_remote_code,
}
tokenizer_name_or_path = model_args.tokenizer_name_or_path
if not tokenizer_name_or_path:
tokenizer_name_or_path = model_args.model_name_or_path
tokenizer = tokenizer_class.from_pretrained(tokenizer_name_or_path, **tokenizer_kwargs)
prompt_template = get_conv_template(script_args.template_name)
if tokenizer.eos_token_id is None:
tokenizer.eos_token = prompt_template.stop_str # eos token is required
tokenizer.add_special_tokens({"eos_token": tokenizer.eos_token})
logger.info(f"Add eos_token: {tokenizer.eos_token}, eos_token_id: {tokenizer.eos_token_id}")
if tokenizer.bos_token_id is None:
tokenizer.add_special_tokens({"bos_token": tokenizer.eos_token})
tokenizer.bos_token_id = tokenizer.eos_token_id
logger.info(f"Add bos_token: {tokenizer.bos_token}, bos_token_id: {tokenizer.bos_token_id}")
if tokenizer.pad_token_id is None:
if tokenizer.unk_token_id is not None:
tokenizer.pad_token = tokenizer.unk_token
else:
tokenizer.pad_token = tokenizer.eos_token
logger.info(f"Add pad_token: {tokenizer.pad_token}, pad_token_id: {tokenizer.pad_token_id}")
logger.debug(f"Tokenizer: {tokenizer}")
IGNORE_INDEX = LabelSmoother.ignore_index if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
# Get datasets
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
)
if "validation" not in raw_datasets.keys():
shuffled_train_dataset = raw_datasets["train"].shuffle(seed=42)
# Split the shuffled train dataset into training and validation sets
split = shuffled_train_dataset.train_test_split(
test_size=data_args.validation_split_percentage / 100,
seed=42
)
# Assign the split datasets back to raw_datasets
raw_datasets["train"] = split["train"]
raw_datasets["validation"] = split["test"]
else:
# Loading a dataset from local files.
data_files = {}
if data_args.train_file_dir is not None and os.path.exists(data_args.train_file_dir):
train_data_files = glob(f'{data_args.train_file_dir}/**/*.json', recursive=True) + glob(
f'{data_args.train_file_dir}/**/*.jsonl', recursive=True)
logger.info(f"train files: {train_data_files}")
data_files["train"] = train_data_files
if data_args.validation_file_dir is not None and os.path.exists(data_args.validation_file_dir):
eval_data_files = glob(f'{data_args.validation_file_dir}/**/*.json', recursive=True) + glob(
f'{data_args.validation_file_dir}/**/*.jsonl', recursive=True)
logger.info(f"eval files: {eval_data_files}")
data_files["validation"] = eval_data_files
raw_datasets = load_dataset(
'json',
data_files=data_files,
cache_dir=model_args.cache_dir,
)
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
if "validation" not in raw_datasets.keys():
shuffled_train_dataset = raw_datasets["train"].shuffle(seed=42)
split = shuffled_train_dataset.train_test_split(
test_size=float(data_args.validation_split_percentage / 100),
seed=42
)
raw_datasets["train"] = split["train"]
raw_datasets["validation"] = split["test"]
logger.info(f"Raw datasets: {raw_datasets}")
# Preprocessing the datasets
max_length = script_args.model_max_length
def preprocess_function(examples):
"""
Preprocessing the datasets.
part of code modified from https://github.com/lm-sys/FastChat
"""
input_ids_list = []
attention_mask_list = []
targets_list = []
roles = ["human", "gpt"]
def get_dialog(examples):
system_prompts = examples.get("system_prompt", "")
for i, source in enumerate(examples['conversations']):
system_prompt = ""
if len(source) < 2:
continue
data_role = source[0].get("from", "")
if data_role == "system":
# Skip the first one if it is from system
system_prompt = source[0]["value"]
source = source[1:]
data_role = source[0].get("from", "")
if data_role not in roles or data_role != roles[0]:
# Skip the first one if it is not from human
source = source[1:]
if len(source) < 2:
continue
messages = []
for j, sentence in enumerate(source):
data_role = sentence.get("from", "")
if data_role not in roles:
logger.warning(f"unknown role: {data_role}, {i}. (ignored)")
break
if data_role == roles[j % 2]:
messages.append(sentence["value"])
if len(messages) % 2 != 0:
continue
# Convert the list to pairs of elements
history_messages = [[messages[k], messages[k + 1]] for k in range(0, len(messages), 2)]
if not system_prompt:
system_prompt = system_prompts[i] if system_prompts else ""
yield prompt_template.get_dialog(history_messages, system_prompt=system_prompt)
for dialog in get_dialog(examples):
input_ids, labels = [], []
for i in range(len(dialog) // 2):
source_ids = tokenizer.encode(text=dialog[2 * i], add_special_tokens=(i == 0))
target_ids = tokenizer.encode(text=dialog[2 * i + 1], add_special_tokens=False)
total_len = len(source_ids) + len(target_ids)
max_source_len = int(max_length * (len(source_ids) / total_len))
max_target_len = int(max_length * (len(target_ids) / total_len))
if len(source_ids) > max_source_len:
source_ids = source_ids[:max_source_len]
if len(target_ids) > max_target_len - 1: # eos token
target_ids = target_ids[:max_target_len - 1]
if len(source_ids) > 0 and source_ids[0] == tokenizer.eos_token_id:
source_ids = source_ids[1:]
if len(target_ids) > 0 and target_ids[-1] == tokenizer.eos_token_id:
target_ids = target_ids[:-1]
if len(input_ids) + len(source_ids) + len(target_ids) + 1 > max_length:
break
input_ids += source_ids + target_ids + [tokenizer.eos_token_id] # add eos token for each turn
if script_args.train_on_inputs:
labels += source_ids + target_ids + [tokenizer.eos_token_id]
else:
labels += [IGNORE_INDEX] * len(source_ids) + target_ids + [tokenizer.eos_token_id]
input_ids_list.append(input_ids)
attention_mask_list.append([1] * len(input_ids))
targets_list.append(labels)
return dict(
input_ids=input_ids_list,
attention_mask=attention_mask_list,
labels=targets_list,
)
def filter_empty_labels(example):
"""Remove empty labels dataset."""
return not all(label == IGNORE_INDEX for label in example["labels"])
train_dataset = None
max_train_samples = 0
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets['train'].shuffle(seed=42)
max_train_samples = len(train_dataset)
if data_args.max_train_samples is not None and data_args.max_train_samples > 0:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
logger.debug(f"Example train_dataset[0]: {train_dataset[0]}")
with training_args.main_process_first(desc="Train dataset tokenization"):
train_dataset = train_dataset.shuffle().map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=train_dataset.column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
train_dataset = train_dataset.filter(filter_empty_labels, num_proc=data_args.preprocessing_num_workers)
logger.debug(f"Num train_samples: {len(train_dataset)}")
logger.debug("Tokenized training example:")
logger.debug(f"Decode input_ids[0]:\n{tokenizer.decode(train_dataset[0]['input_ids'])}")
replaced_labels = [label if label != IGNORE_INDEX else tokenizer.pad_token_id
for label in list(train_dataset[0]['labels'])]
logger.debug(f"Decode labels[0]:\n{tokenizer.decode(replaced_labels)}")
eval_dataset = None
max_eval_samples = 0
if training_args.do_eval:
with training_args.main_process_first(desc="Eval dataset tokenization"):
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
max_eval_samples = len(eval_dataset)
if data_args.max_eval_samples is not None and data_args.max_eval_samples > 0:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
eval_size = len(eval_dataset)
logger.debug(f"Num eval_samples: {eval_size}")
if eval_size > 500:
logger.warning(f"Num eval_samples is large: {eval_size}, "
f"training slow, consider reduce it by `--max_eval_samples=50`")
logger.debug(f"Example eval_dataset[0]: {eval_dataset[0]}")
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=eval_dataset.column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
eval_dataset = eval_dataset.filter(filter_empty_labels, num_proc=data_args.preprocessing_num_workers)
logger.debug(f"Num eval_samples: {len(eval_dataset)}")
logger.debug("Tokenized eval example:")
logger.debug(tokenizer.decode(eval_dataset[0]['input_ids']))
# Load model
if model_args.model_name_or_path:
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
world_size = int(os.environ.get("WORLD_SIZE", "1"))
ddp = world_size != 1
if ddp:
model_args.device_map = {"": int(os.environ.get("LOCAL_RANK", "0"))}
training_args.gradient_accumulation_steps = training_args.gradient_accumulation_steps // world_size or 1
if script_args.qlora and (len(training_args.fsdp) > 0 or is_deepspeed_zero3_enabled()):
logger.warning("FSDP and DeepSpeed ZeRO-3 are both currently incompatible with QLoRA.")
config_kwargs = {
"trust_remote_code": model_args.trust_remote_code,
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"token": model_args.hf_hub_token,
}
config = config_class.from_pretrained(model_args.model_name_or_path, **config_kwargs)
# Set RoPE scaling
if model_args.rope_scaling is not None:
if hasattr(config, "rope_scaling"):
if model_args.rope_scaling == "dynamic":
logger.warning(
"Dynamic NTK may not work well with fine-tuning. "
"See: https://github.com/huggingface/transformers/pull/24653"
)
current_max_length = getattr(config, "max_position_embeddings", None)
if current_max_length and script_args.model_max_length > current_max_length:
scaling_factor = float(math.ceil(script_args.model_max_length / current_max_length))
else:
logger.warning(f"The model_max_length({script_args.model_max_length}) is smaller than max "
f"length({current_max_length}). Consider increase model_max_length.")
scaling_factor = 1.0
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor})
logger.info("Using {} scaling strategy and setting scaling factor to {}".format(
model_args.rope_scaling, scaling_factor
))
else:
logger.warning("Current model does not support RoPE scaling.")
# Set FlashAttention-2
if model_args.flash_attn:
if is_flash_attn_2_available:
config_kwargs["use_flash_attention_2"] = True
logger.info("Using FlashAttention-2 for faster training and inference.")
else:
logger.warning("FlashAttention-2 is not installed.")
elif model_args.shift_attn and getattr(config, "model_type", None) == "llama":
logger.warning("Using `--flash_attn` for faster training in large context length, enable if your GPU"
" is RTX3090, RTX4090, A100 or H100.")
# Set shifted sparse attention (S^2-Attn)
if model_args.shift_attn:
if getattr(config, "model_type", None) == "llama":
setattr(config, "group_size_ratio", 0.25)
apply_llama_patch()
logger.info("Using shifted sparse attention with group_size_ratio=1/4.")
else:
logger.warning("Current model does not support shifted sparse attention.")
load_in_4bit = model_args.load_in_4bit
load_in_8bit = model_args.load_in_8bit
if load_in_4bit and load_in_8bit:
raise ValueError("Error, load_in_4bit and load_in_8bit cannot be set at the same time")
elif load_in_8bit or load_in_4bit:
logger.info(f"Quantizing model, load_in_4bit: {load_in_4bit}, load_in_8bit: {load_in_8bit}")
if is_deepspeed_zero3_enabled():
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
if load_in_8bit:
config_kwargs['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True)
elif load_in_4bit:
if script_args.qlora:
config_kwargs['quantization_config'] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
)
else:
config_kwargs['quantization_config'] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch_dtype,
)
model = model_class.from_pretrained(
model_args.model_name_or_path,
config=config,
torch_dtype=torch_dtype,
device_map=model_args.device_map,
**config_kwargs,
)
# Fix ChatGLM2 and ChatGLM3 and internlm2 LM head
if getattr(config, "model_type", None) == "chatglm" or getattr(config, "model_type", None) == "internlm2":
setattr(model, "lm_head", model.transformer.output_layer)
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
# Set NEFTune trick for fine-tuning
if model_args.neft_alpha > 0:
input_embed = model.get_input_embeddings()
if isinstance(input_embed, torch.nn.Embedding):
def noisy_forward(self: torch.nn.Embedding, x: torch.Tensor) -> torch.Tensor:
embeddings = input_embed.__class__.forward(self, x)
dims = self.num_embeddings * self.embedding_dim
mag_norm = model_args.neft_alpha / (dims ** 0.5)
embeddings += torch.zeros_like(embeddings).uniform_(-mag_norm, mag_norm)
return embeddings
input_embed.forward = MethodType(noisy_forward, input_embed)
logger.info("Using noisy embedding with alpha={:.2f}".format(model_args.neft_alpha))
else:
logger.warning("Input embeddings are not normal nn.Embedding, cannot transform into noisy embedding.")
# Patch Mixtral MOE model
if getattr(config, "model_type", None) == "mixtral" and is_deepspeed_zero3_enabled():
require_version("deepspeed>=0.13.0", "To fix: pip install deepspeed>=0.13.0")
from deepspeed.utils import set_z3_leaf_modules # type: ignore
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock # type: ignore
set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
else:
raise ValueError(f"Error, model_name_or_path is None, SFT must be loaded from a pre-trained model")
if script_args.use_peft:
logger.info("Fine-tuning method: LoRA(PEFT)")
# Set fp32 forward hook for lm_head
output_layer = getattr(model, "lm_head")
if isinstance(output_layer, torch.nn.Linear) and output_layer.weight.dtype != torch.float32:
def fp32_forward_post_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor):
return output.to(torch.float32)
output_layer.register_forward_hook(fp32_forward_post_hook)
# Load LoRA model
if script_args.peft_path is not None:
logger.info(f"Peft from pre-trained model: {script_args.peft_path}")
model = PeftModel.from_pretrained(model, script_args.peft_path, is_trainable=True)
else:
logger.info("Init new peft model")
if load_in_8bit or load_in_4bit:
model = prepare_model_for_kbit_training(model, training_args.gradient_checkpointing)
target_modules = script_args.target_modules.split(',') if script_args.target_modules else None
if target_modules and 'all' in target_modules:
target_modules = find_all_linear_names(model, int4=load_in_4bit, int8=load_in_8bit)
modules_to_save = script_args.modules_to_save
if modules_to_save is not None:
modules_to_save = modules_to_save.split(',')
logger.info(f"Peft target_modules: {target_modules}")
logger.info(f"Peft lora_rank: {script_args.lora_rank}")
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=target_modules,
inference_mode=False,
r=script_args.lora_rank,
lora_alpha=script_args.lora_alpha,
lora_dropout=script_args.lora_dropout,
modules_to_save=modules_to_save)
model = get_peft_model(model, peft_config)
for param in filter(lambda p: p.requires_grad, model.parameters()):
param.data = param.data.to(torch.float32)
model.print_trainable_parameters()
else:
logger.info("Fine-tuning method: Full parameters training")
model = model.float()
print_trainable_parameters(model)
# Initialize our Trainer
if training_args.gradient_checkpointing and getattr(model, "supports_gradient_checkpointing", False):
model.gradient_checkpointing_enable()
model.config.use_cache = False
logger.info("Gradient checkpointing enabled.")
else:
model.config.use_cache = True
logger.info("Gradient checkpointing disabled.")
model.enable_input_require_grads()
if not ddp and torch.cuda.device_count() > 1:
# Keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
model=model,
label_pad_token_id=IGNORE_INDEX,
pad_to_multiple_of=4 if tokenizer.padding_side == "right" else None, # for shifted sparse attention
)
# Initialize our Trainer
trainer = SavePeftModelTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
)
# Training
if training_args.do_train:
logger.info("*** Train ***")
if trainer.is_world_process_zero():
sample = next(iter(trainer.get_train_dataloader()))
logger.debug(f"Train dataloader example: {sample}")
logger.debug(f"input_ids:\n{list(sample['input_ids'])[:3]}, \nlabels:\n{list(sample['labels'])[:3]}")
logger.debug(f"Decode input_ids[0]:\n{tokenizer.decode(sample['input_ids'][0])}")
replaced_labels = [label if label != IGNORE_INDEX else tokenizer.pad_token_id for label in
sample['labels'][0]]
logger.debug(f"Decode labels[0]:\n{tokenizer.decode(replaced_labels)}")
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
metrics["train_samples"] = max_train_samples
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
model.config.use_cache = True # enable cache after training
tokenizer.padding_side = "left" # restore padding side
tokenizer.init_kwargs["padding_side"] = "left"
if trainer.is_world_process_zero():
logger.debug(f"Training metrics: {metrics}")
logger.info(f"Saving model checkpoint to {training_args.output_dir}")
if is_deepspeed_zero3_enabled():
save_model_zero3(model, tokenizer, training_args, trainer)
else:
save_model(model, tokenizer, training_args)
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(metric_key_prefix="eval")
metrics["eval_samples"] = max_eval_samples
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if trainer.is_world_process_zero():
logger.debug(f"Eval metrics: {metrics}")
if __name__ == "__main__":
main()