forked from YudeWang/SEAM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
infer_SEAM.py
114 lines (91 loc) · 4.55 KB
/
infer_SEAM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import numpy as np
import torch
import cv2
import os
import voc12.data
import scipy.misc
import importlib
from torch.utils.data import DataLoader
import torchvision
from tool import imutils, pyutils, visualization
import argparse
from PIL import Image
import torch.nn.functional as F
import pandas as pd
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--weights", required=True, type=str)
parser.add_argument("--network", default="network.resnet38_SEAM", type=str)
parser.add_argument("--infer_list", default="voc12/train.txt", type=str)
parser.add_argument("--num_workers", default=8, type=int)
parser.add_argument("--voc12_root", default='VOC2012', type=str)
parser.add_argument("--out_cam", default=None, type=str)
parser.add_argument("--out_crf", default=None, type=str)
parser.add_argument("--out_cam_pred", default=None, type=str)
parser.add_argument("--out_cam_pred_alpha", default=0.26, type=float)
args = parser.parse_args()
crf_alpha = [4,24]
model = getattr(importlib.import_module(args.network), 'Net')()
model.load_state_dict(torch.load(args.weights))
model.eval()
model.cuda()
infer_dataset = voc12.data.VOC12ClsDatasetMSF(args.infer_list, voc12_root=args.voc12_root,
scales=[0.5, 1.0, 1.5, 2.0],
inter_transform=torchvision.transforms.Compose(
[np.asarray,
model.normalize,
imutils.HWC_to_CHW]))
infer_data_loader = DataLoader(infer_dataset, shuffle=False, num_workers=args.num_workers, pin_memory=True)
n_gpus = torch.cuda.device_count()
model_replicas = torch.nn.parallel.replicate(model, list(range(n_gpus)))
for iter, (img_name, img_list, label) in enumerate(infer_data_loader):
img_name = img_name[0]; label = label[0]
img_path = voc12.data.get_img_path(img_name, args.voc12_root)
orig_img = np.asarray(Image.open(img_path))
orig_img_size = orig_img.shape[:2]
def _work(i, img):
with torch.no_grad():
with torch.cuda.device(i%n_gpus):
_, cam = model_replicas[i%n_gpus](img.cuda())
cam = F.upsample(cam[:,1:,:,:], orig_img_size, mode='bilinear', align_corners=False)[0]
cam = cam.cpu().numpy() * label.clone().view(20, 1, 1).numpy()
if i % 2 == 1:
cam = np.flip(cam, axis=-1)
return cam
thread_pool = pyutils.BatchThreader(_work, list(enumerate(img_list)),
batch_size=12, prefetch_size=0, processes=args.num_workers)
cam_list = thread_pool.pop_results()
sum_cam = np.sum(cam_list, axis=0)
sum_cam[sum_cam < 0] = 0
cam_max = np.max(sum_cam, (1,2), keepdims=True)
cam_min = np.min(sum_cam, (1,2), keepdims=True)
sum_cam[sum_cam < cam_min+1e-5] = 0
norm_cam = (sum_cam-cam_min-1e-5) / (cam_max - cam_min + 1e-5)
cam_dict = {}
for i in range(20):
if label[i] > 1e-5:
cam_dict[i] = norm_cam[i]
if args.out_cam is not None:
np.save(os.path.join(args.out_cam, img_name + '.npy'), cam_dict)
if args.out_cam_pred is not None:
bg_score = [np.ones_like(norm_cam[0])*args.out_cam_pred_alpha]
pred = np.argmax(np.concatenate((bg_score, norm_cam)), 0)
scipy.misc.imsave(os.path.join(args.out_cam_pred, img_name + '.png'), pred.astype(np.uint8))
def _crf_with_alpha(cam_dict, alpha):
v = np.array(list(cam_dict.values()))
bg_score = np.power(1 - np.max(v, axis=0, keepdims=True), alpha)
bgcam_score = np.concatenate((bg_score, v), axis=0)
crf_score = imutils.crf_inference(orig_img, bgcam_score, labels=bgcam_score.shape[0])
n_crf_al = dict()
n_crf_al[0] = crf_score[0]
for i, key in enumerate(cam_dict.keys()):
n_crf_al[key+1] = crf_score[i+1]
return n_crf_al
if args.out_crf is not None:
for t in crf_alpha:
crf = _crf_with_alpha(cam_dict, t)
folder = args.out_crf + ('_%.1f'%t)
if not os.path.exists(folder):
os.makedirs(folder)
np.save(os.path.join(folder, img_name + '.npy'), crf)
print(iter)