Skip to content

A text analyzer which is based on machine learning,statistics and dictionaries that can analyze text. So far, it supports hot word extracting, text classification, part of speech tagging, named entity recognition, chinese word segment, extracting address, synonym, text clustering, word2vec model, edit distance, chinese word segment, sentence sim…

Notifications You must be signed in to change notification settings

sea-boat/TextAnalyzer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TextAnalyzer

A text analyzer which is based on machine learning, statistics and dictionaries that can analyze text.

So far, it supports hot word extracting, text classification, part of speech tagging, named entity recognition, chinese word segment, extracting address, synonym, text clustering, word2vec model, edit distance, chinese word segment, sentence similarity,word sentiment tendency, name recognition, idiom recognition, placename recognition, organization recognition, traditional chinese recognition, pinyin transform.

Features

extracting hot words from text.

  1. to gather statistics via frequence.
  2. to gather statistics via by tf-idf algorithm
  3. to gather statistics via a score factor additionally.

extracting address from text.

synonym can be recognized

SVM Classificator

This analyzer supports to classify text by svm. it involves vectoring the text. We can train the samples and then make a classification by the model.

For convenience,the model,tfidf and vector will be stored.

kmeans clustering && xmeans clustering

This analyzer supports to clustering text by kmeans and xmeans.

vsm clustering

This analyzer supports to clustering text by vsm.

part of speech tagging

It's implemented by HMM model and decoder by viterbi algorithm.

google word2vec model

This analyzer supports to use word2vec model.

chinese word segment

This analyzer supports to do chinese word segment.

edit distance

This analyzer supports calculating edit distance on char level or word level.

sentence similarity

This analyzer supports calculating similarity between two sentences.

How To Use

just simple like this

Extracting Hot Words

  1. indexing a document and get a docId.
long docId = TextIndexer.index(text);
  1. extracting by docId.
 HotWordExtractor extractor = new HotWordExtractor();
 List<Result> list = extractor.extract(0, 20, false);
 if (list != null) for (Result s : list)
    System.out.println(s.getTerm() + " : " + s.getFrequency() + " : " + s.getScore());

a result contains term,frequency and score.

失业证 : 1 : 0.31436604
户口 : 1 : 0.30099702
单位 : 1 : 0.29152703
提取 : 1 : 0.27927202
领取 : 1 : 0.27581802
职工 : 1 : 0.27381304
劳动 : 1 : 0.27370203
关系 : 1 : 0.27080503
本市 : 1 : 0.27080503
终止 : 1 : 0.27080503

Extracting Address

String str ="xxxx";
AddressExtractor extractor = new AddressExtractor();
List<String> list = extractor.extract(str);

SVM Classificator

  1. training the samples.
SVMTrainer trainer = new SVMTrainer();
trainer.train();
  1. predicting text classification.
double[] data = trainer.getWordVector(text);
trainer.predict(data);

Kmeans Clustering && Xmeans Clustering

List<String> list = DataReader.readContent(KMeansCluster.DATA_FILE);
int[] labels = new KMeansCluster().learn(list);

VSM Clustering

List<String> list = DataReader.readContent(VSMCluster.DATA_FILE);
List<String> labels = new VSMCluster().learn(list);

Part Of Speech Tagging

HMMModel model = new HMMModel();
model.train();
ViterbiDecoder decoder = new ViterbiDecoder(model);
decoder.decode(words);

Define Your Own Named Entity

MITIE is an information extractor library comes up with MIT NLP term , which github is https://github.com/mit-nlp/MITIE .

train total_word_feature_extractor

Prepare your word set, you can put them into a txt file in the directory of 'data'.

And then do things below:

git clone https://github.com/mit-nlp/MITIE.git
cd tools
cd wordrep
mkdir build
cd build
cmake ..
cmake --build . --config Release
wordrep -e data

Finally you get the total_word_feature_extractor model.

train ner_model

We can use Java\C++\Python to train the ner model, anyway we must use the total_word_feature_extractor model to train it.

if Java,

NerTrainer nerTrainer = new NerTrainer("model/mitie_model/total_word_feature_extractor.dat");

if C++,

ner_trainer trainer("model/mitie_model/total_word_feature_extractor.dat");

if Python,

trainer = ner_trainer("model/mitie_model/total_word_feature_extractor.dat")

build shared library

Do commands below:

cd mitielib
D:\MITIE\mitielib>mkdir build
D:\MITIE\mitielib>cd build
D:\MITIE\mitielib\build>cmake ..
D:\MITIE\mitielib\build>cmake --build . --config Release --target install

Then we get these below:

-- Install configuration: "Release"
-- Installing: D:/MITIE/mitielib/java/../javamitie.dll
-- Installing: D:/MITIE/mitielib/java/../javamitie.jar
-- Up-to-date: D:/MITIE/mitielib/java/../msvcp140.dll
-- Up-to-date: D:/MITIE/mitielib/java/../vcruntime140.dll
-- Up-to-date: D:/MITIE/mitielib/java/../concrt140.dll

Word2vec

we must set the word2vec's path system parameter when startup,just like this -Dword2vec.path=D:\Google_word2vec_zhwiki1710_300d.bin.

using google model.

Word2Vec vec = Word2Vec.getInstance(true);
System.out.println("狗|猫: " + vec.wordSimilarity("狗", "猫"));

using java model

Word2Vec vec = Word2Vec.getInstance(false);
System.out.println("狗|猫: " + vec.wordSimilarity("狗", "猫"));

Segment&Search

DictSegment segment = new DictSegment();
System.out.println(segment.seg("我是中国人"));
System.out.println(segment.Search("我在广州市"));

Edit Distance

char level,

CharEditDistance cdd = new CharEditDistance();
cdd.getEditDistance("what", "where");
cdd.getEditDistance("我们是中国人", "他们是日本人吖,四贵子");
cdd.getEditDistance("是我", "我是");

word level,

List list1 = new ArrayList<String>();
list1.add(new EditBlock("计算机",""));
list1.add(new EditBlock("多少",""));
list1.add(new EditBlock("钱",""));
List list2 = new ArrayList<String>();
list2.add(new EditBlock("电脑",""));
list2.add(new EditBlock("多少",""));
list2.add(new EditBlock("钱",""));
ed.getEditDistance(list1, list2);

Sentence Similarity

String s1 = "我们是中国人";
String s2 = "他们是日本人,四贵子";
SentenceSimilarity ss = new SentenceSimilarity();
System.out.println(ss.getSimilarity(s1, s2));
s1 = "我们是中国人";
s2 = "我们是中国人";
System.out.println(ss.getSimilarity(s1, s2));

Get Synonym via Cilin Dictionary

CilinDictionary dict = CilinDictionary.getInstance();
Set<String> code = dict.getCilinCoding("人类");
System.out.println(dict.getCilinWords(code.iterator().next()));
[全人类, 生人, 人类]

Words' Similarity by Cilin

String s1 = "中国人";
String s2 = "炎黄子孙";
CilinSimilarity cs = new CilinSimilarity();
System.out.println(cs.getSimilarity(s1, s2));
s1 = "汽车";
s2 = "摩托";
System.out.println(cs.getSimilarity(s1, s2));

Get Hownet Glossary

HownetGlossary glossary = HownetGlossary.getInstance();
Collection<Term> coll = glossary.getTerms("人类");
for (Term t : coll)
  System.out.println(t);

Get Hownet Sememe

HownetSememe sememe = HownetSememe.getInstance();
Collection<String> coll = sememe.getDefine("用具");
for (String t : coll)
  System.out.println(t);

Hownet Words Similarity

HownetSimilarity hownetSimilarity = new HownetSimilarity();
System.out.println("hownet similarity : " + hownetSimilarity.getSimilarity("中国", "美国"));

Get Pinyin

System.out.println(PinyinUtil.getInstance().getPinyin("哈哈"));
System.out.println(PinyinUtil.getInstance().getPinyin("中"));
System.out.println(PinyinUtil.getInstance().getPinyin("中国"));

Pinyin Similarity

String s1 = "今天";
String s2 = "明天";
PinyinSimilarity cs = new PinyinSimilarity();
System.out.println(cs.getSimilarity(s1, s2));

Information Extractor

usage

We have provided Python and Java APIs for extractor,choose one of them.

python

do a predict by this below,

python crf_ner.py predict "测试文本" "../model/crf.model"

java

List list = JCYExtractor.getIDs(text);

list = JCYExtractor.getNames(text);

JCYExtractor.getAddrs(text);

train a model

  1. To collect corpus.
  2. Tagging corpus,we support those labels below,
# IB : ID beginning
# IE : ID ending
# IM : ID middle
# U : unlabeled
# PB : person beginning
# PE : person ending
# PM : person middle
# BB : birthday beginning
# BM : birthday middle
# BE : birthday ending
# LB : location beginning
# LM : location middle
# LE : location endings

for example,

被	U
不	U
起	U
诉	U
人	U
伍	PB
某	PM
某	PE
,	U
  1. Put all samples to the directory of data/jcy_data/train.
  2. Call train function in the crf_ner.py script,the model will produce in the directory of model which name is crf.model.

Word Tendency

WordSentimentTendency tendency = new WordSentimentTendency();
System.out.println(tendency.getTendency("高兴"));
System.out.println(tendency.getTendency("伤心"));

Chinese&English Name Recognition

NameDict.get().searchName("汪建是华大基因董事长");
NameDict.get().searchEnglishName("Tom and Jim are my friends");

Idiom Recognition

IdiomDict.get().searchIdiom("从前有个人阿谀奉承");

Placename Recognition

PlacenameDict.get().searchPlacename("我住在天河北路,不在广州大道中,在天河区");

Organization Recognition

OrganizationDict.get().searchOrganization("去阿里巴巴找朋友");

Traditional Chinese Recognition

List<Integer> list = TraditionalDict.get().prefixSearch("1隻大狗");
for(int i:list)
	System.out.println(TraditionalDict.get().getStringByIndex(i));

Pinyin Transform

PinyinDict.get().getStringByIndex(PinyinDict.get().exactlySearch("一心一意"));

About

A text analyzer which is based on machine learning,statistics and dictionaries that can analyze text. So far, it supports hot word extracting, text classification, part of speech tagging, named entity recognition, chinese word segment, extracting address, synonym, text clustering, word2vec model, edit distance, chinese word segment, sentence sim…

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published