forked from bourdakos1/capsule-networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
executable file
·77 lines (57 loc) · 2.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import scipy
import numpy as np
import tensorflow as tf
from config import cfg
def load_mnist(path, is_training):
fd = open(os.path.join(cfg.dataset, 'train-images-idx3-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
trX = loaded[16:].reshape((60000, 28, 28, 1)).astype(np.float)
fd = open(os.path.join(cfg.dataset, 'train-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
trY = loaded[8:].reshape((60000)).astype(np.int32)
fd = open(os.path.join(cfg.dataset, 't10k-images-idx3-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
teX = loaded[16:].reshape((10000, 28, 28, 1)).astype(np.float)
fd = open(os.path.join(cfg.dataset, 't10k-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
teY = loaded[8:].reshape((10000)).astype(np.int32)
# normalization and convert to a tensor [60000, 28, 28, 1]
trX = tf.convert_to_tensor(trX / 255., tf.float32)
# => [num_samples, 10]
# trY = tf.one_hot(trY, depth=10, axis=1, dtype=tf.float32)
# teY = tf.one_hot(teY, depth=10, axis=1, dtype=tf.float32)
if is_training:
return trX, trY
else:
return teX / 255., teY
def get_batch_data():
trX, trY = load_mnist(cfg.dataset, cfg.is_training)
data_queues = tf.train.slice_input_producer([trX, trY])
X, Y = tf.train.shuffle_batch(data_queues, num_threads=cfg.num_threads,
batch_size=cfg.batch_size,
capacity=cfg.batch_size * 64,
min_after_dequeue=cfg.batch_size * 32,
allow_smaller_final_batch=False)
return(X, Y)
def save_images(imgs, size, path):
'''
Args:
imgs: [batch_size, image_height, image_width]
size: a list with tow int elements, [image_height, image_width]
path: the path to save images
'''
imgs = (imgs + 1.) / 2 # inverse_transform
return(scipy.misc.imsave(path, mergeImgs(imgs, size)))
def mergeImgs(images, size):
h, w = images.shape[1], images.shape[2]
imgs = np.zeros((h * size[0], w * size[1], 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
imgs[j * h:j * h + h, i * w:i * w + w, :] = image
return imgs
if __name__ == '__main__':
X, Y = load_mnist(cfg.dataset, cfg.is_training)
print(X.get_shape())
print(X.dtype)