Skip to content

Материалы по курсу анализу данных

Notifications You must be signed in to change notification settings

samvelkoch/Competitive_Data_Science

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Competitive Data Science

Материалы по курсу сореновантельного анализа данных

Острожно! Курс все еще в разработке!!!

1. 🚀 Введение

Введение в соревновательный Data Science

  • 1.1 🎬 Что даст тебе этот курс?
  • 1.2 ✈️ Суть соревновательного анализа данных
  • 1.3 🤼‍♀️ А с кем и где будем соревноваться в курсе?

2. 🎵 Классические элементы анализа данных

А ты думал сразу стакать будем?!

  • 2.1 🎓🐍 Пишем и организуем код
  • 2.2 🎓🐼 Pandas. Забудь про циклы! 🐍
  • 2.3 💾📈 Данные и визуализация. Куда двигаться?!
  • 2.4 🦾🤖 Валидация и модели

3. 🤿 Углубляемся в Feature Engineering

Перед тем как накидывать модели, выжмем максимум из данных

  • 3.1 💪🐼 Pandas мощнее, чем ты думаешь!
  • 3.2 👀🚗 Визуализация. Как понять, где модель косячит?
  • 3.3 🤜🦈Генерируем новые признаки и увеличиваем точность
  • 3.4 ☂️ Фильтрация признаков
  • 3.5 🦆🔥 Секретный гость (Интервью с KGM)

4. 👨‍🔧Тюнинг бустингов как искусство

Знать как устроены модели мало, надо уметь их оптимизировать

  • 4.1 😺🚀 CatBoost + Feature Engineering
  • 4.2 🦄🎳 LightGBM + Feature Engineering
  • 4.3 👽🔱 XGBoost + Feature Engineering
  • 4.4 🌳🌲🌴 Бустинги. Практика
  • 4.5 🎯 Вспоминаем, что у нас целых два таргета!
  • 4.6 🦆🔥 Секретный гость (Советы от KGM)

5. 🍋💦 Выжимаем максимум из ML моделей

Жмем Shift + Tab и подбираем гипер-параметры моделей автоматически

  • 5.1 🎣 Автоматическая генерация и фильтрация признаков
  • 5.2 ⚙️ Не время блендить, давайте выжмем еще!
  • 5.3 🤹‍♂️Трюки и хитрости
  • 5.4 ✏️ Hard упражнения по Pandas и Numpy для любопытных
  • 5.5 🦆🔥 Секретный гость (Секреты от KGM)

6. 🧞‍♂️ Блендинг, cтекинг и другие техники дойти до 95%

И один ты в поле воин, если твой ансамбль из сотни скроен.

  • 6.1 ⚔️ Блендинг. Смешай и точность вырастет!
  • 6.2 💎 Стекинг. Точность снова выросла, да ну на?!
  • 6.3 🦏 Автоматический блендинг и стекинг. Sklearn-Pipelines
  • 6.4 🦆🔥 Секретный гость (Истории от KGM)

7. 🙋‍♀️ Вспомогательные техники

Помоги своему пайплайну дышать свободнее

  • 7.1 ⏱ Оптимизация памяти и ускорение вычислений
  • 7.2 🧹 Парсинг внешних данных

8. 🏆🥳 Kaggle. Ящик инструментов для победы

  • 8.1 Полное baseline решение. Бей его!
  • 8.2 🚢 Работа с платформой Kaggle и Kaggle API
  • 8.3 🌈 Google Colab, Paper Space, Yandex Cloud и другие

9. 🎁 Бонусные главы

Этих главы не обязательны для получения сертификата за курс, но эти главы выделят тебя на фоне остальных.

  • 9.1 🧠 А нейронки будут ?!
  • 9.2 🚚 Продвинутый Feature Engineering
  • 9.3 🏋️‍♂️🏌️‍♂️ Weigths & Biases
  • 9.4 👩‍🎤👨‍🎤💡Работа в команде

10. 🤐🎃 Запрещенные техники или что там по привату?!

Предупрежден - значит вооружен!

  • 10.1 🎲 Работа с метрикой. Пре-процессинг и пост-процессинг
  • 10.2 🎭 Псевдолейблинг
  • 10.3 🏹 Пробиваем лидерборд

11. 🏁 Финиш курса

  • 11.1 Ну вот и все. Что дальше?

Ссылка на курс: https://stepik.org/a/108888

Авторы

  • Миленькин Александр (@Aleron75)
  • Александров Иван (@ivanich_spb)

About

Материалы по курсу анализу данных

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%