-
Notifications
You must be signed in to change notification settings - Fork 240
/
prob1.c
524 lines (491 loc) · 19.8 KB
/
prob1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
/* prob1.c -- mathematical utility functions.
Copyright (C) 2010, 2011 Broad Institute.
Copyright (C) 2012, 2013-2014, 2017 Genome Research Ltd.
Author: Heng Li <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <assert.h>
#include <limits.h>
#include "prob1.h"
#define MC_MAX_EM_ITER 16
#define MC_EM_EPS 1e-5
#define MC_DEF_INDEL 0.15
void bcf_p1_indel_prior(bcf_p1aux_t *ma, double x)
{
int i;
for (i = 0; i < ma->M; ++i)
ma->phi_indel[i] = ma->phi[i] * x;
ma->phi_indel[ma->M] = 1. - ma->phi[ma->M] * x;
}
static void init_prior(int type, double theta, int M, double *phi)
{
int i;
if (type == MC_PTYPE_COND2) {
for (i = 0; i <= M; ++i)
phi[i] = 2. * (i + 1) / (M + 1) / (M + 2);
} else if (type == MC_PTYPE_FLAT) {
for (i = 0; i <= M; ++i)
phi[i] = 1. / (M + 1);
} else {
double sum;
for (i = 0, sum = 0.; i < M; ++i)
sum += (phi[i] = theta / (M - i));
phi[M] = 1. - sum;
}
}
void bcf_p1_init_prior(bcf_p1aux_t *ma, int type, double theta)
{
init_prior(type, theta, ma->M, ma->phi);
bcf_p1_indel_prior(ma, MC_DEF_INDEL);
}
void bcf_p1_init_subprior(bcf_p1aux_t *ma, int type, double theta)
{
if (ma->n1 <= 0 || ma->n1 >= ma->M) return;
init_prior(type, theta, 2*ma->n1, ma->phi1);
init_prior(type, theta, 2*(ma->n - ma->n1), ma->phi2);
}
/* Initialise a bcf_p1aux_t */
bcf_p1aux_t *bcf_p1_init(int n_smpl, uint8_t *ploidy)
{
bcf_p1aux_t *ma;
int i;
ma = (bcf_p1aux_t*) calloc(1, sizeof(bcf_p1aux_t));
ma->n1 = -1;
ma->n = n_smpl;
ma->M = 2 * n_smpl;
if (ploidy) {
ma->ploidy = (uint8_t*) malloc(n_smpl);
memcpy(ma->ploidy, ploidy, n_smpl);
for (i = 0, ma->M = 0; i < n_smpl; ++i) ma->M += ploidy[i];
if (ma->M == 2 * n_smpl) {
free(ma->ploidy);
ma->ploidy = 0;
}
}
ma->q2p = (double*) calloc(256, sizeof(double));
ma->pdg = (double*) calloc(3 * ma->n, sizeof(double));
ma->phi = (double*) calloc(ma->M + 1, sizeof(double));
ma->phi_indel = (double*) calloc(ma->M + 1, sizeof(double));
ma->phi1 = (double*) calloc(ma->M + 1, sizeof(double));
ma->phi2 = (double*) calloc(ma->M + 1, sizeof(double));
ma->z = (double*) calloc(ma->M + 1, sizeof(double));
ma->zswap = (double*) calloc(ma->M + 1, sizeof(double));
ma->z1 = (double*) calloc(ma->M + 1, sizeof(double)); // actually we do not need this large
ma->z2 = (double*) calloc(ma->M + 1, sizeof(double));
ma->afs = (double*) calloc(ma->M + 1, sizeof(double));
ma->afs1 = (double*) calloc(ma->M + 1, sizeof(double));
ma->lf = (double*) calloc(ma->M + 1, sizeof(double));
for (i = 0; i < 256; ++i)
ma->q2p[i] = pow(10., -i / 10.);
for (i = 0; i <= ma->M; ++i) ma->lf[i] = lgamma(i + 1);
bcf_p1_init_prior(ma, MC_PTYPE_FULL, 1e-3); // the simplest prior
return ma;
}
int bcf_p1_get_M(bcf_p1aux_t *b) { return b->M; }
int bcf_p1_set_n1(bcf_p1aux_t *b, int n1)
{
if (n1 == 0 || n1 >= b->n) return -1;
if (b->M != b->n * 2) {
fprintf(stderr, "[%s] unable to set `n1' when there are haploid samples.\n", __func__);
return -1;
}
b->n1 = n1;
return 0;
}
void bcf_p1_destroy(bcf_p1aux_t *ma)
{
if (ma) {
int k;
free(ma->lf);
if (ma->hg && ma->n1 > 0) {
for (k = 0; k <= 2*ma->n1; ++k) free(ma->hg[k]);
free(ma->hg);
}
free(ma->ploidy); free(ma->q2p); free(ma->pdg);
free(ma->phi); free(ma->phi_indel); free(ma->phi1); free(ma->phi2);
free(ma->z); free(ma->zswap); free(ma->z1); free(ma->z2);
free(ma->afs); free(ma->afs1);
free(ma);
}
}
extern double kf_gammap(double s, double z);
int test16(bcf1_t *b, anno16_t *a);
/* Calculate P(D|g) */
static int cal_pdg(const bcf1_t *b, bcf_p1aux_t *ma)
{
int i, j;
long p_a[16], *p=p_a, tmp;
if (b->n_allele > 16)
p = (long*) malloc(b->n_allele * sizeof(long));
memset(p, 0, sizeof(long) * b->n_allele);
// Set P(D|g) for each sample and sum phread likelihoods across all samples to create lk
for (j = 0; j < ma->n; ++j) {
// Fetch the PL array for the sample
const int *pi = ma->PL + j * ma->PL_len;
// Fetch the P(D|g) array for the sample
double *pdg = ma->pdg + j * 3;
pdg[0] = ma->q2p[pi[2]]; pdg[1] = ma->q2p[pi[1]]; pdg[2] = ma->q2p[pi[0]];
for (i = 0; i < b->n_allele; ++i)
p[i] += (int)pi[(i+1)*(i+2)/2-1];
}
for (i = 0; i < b->n_allele; ++i) p[i] = p[i]<<4 | i;
for (i = 1; i < b->n_allele; ++i) // insertion sort
for (j = i; j > 0 && p[j] < p[j-1]; --j)
tmp = p[j], p[j] = p[j-1], p[j-1] = tmp;
for (i = b->n_allele - 1; i >= 0; --i)
if ((p[i]&0xf) == 0) break;
if (p != p_a)
free(p);
return i;
}
/* f0 is freq of the ref allele */
int bcf_p1_call_gt(const bcf_p1aux_t *ma, double f0, int k, int is_var)
{
double sum, g[3];
double max, f3[3], *pdg = ma->pdg + k * 3;
int q, i, max_i, ploidy;
/* determine ploidy */
ploidy = ma->ploidy? ma->ploidy[k] : 2;
if (ploidy == 2) {
/* given allele frequency we can determine how many of each
* genotype we have by HWE p=1-q PP=p^2 PQ&QP=2*p*q QQ=q^2 */
f3[0] = (1.-f0)*(1.-f0); f3[1] = 2.*f0*(1.-f0); f3[2] = f0*f0;
} else {
f3[0] = 1. - f0; f3[1] = 0; f3[2] = f0;
}
for (i = 0, sum = 0.; i < 3; ++i)
sum += (g[i] = pdg[i] * f3[i]);
/* normalise g and then determine max */
for (i = 0, max = -1., max_i = 0; i < 3; ++i) {
g[i] /= sum;
if (g[i] > max) max = g[i], max_i = i;
}
if ( !is_var ) { max_i = 2; max = g[2]; } // force 0/0 genotype if the site is non-variant
max = 1. - max;
if (max < 1e-308) max = 1e-308;
q = (int)(-4.343 * log(max) + .499);
if (q > 99) q = 99;
return q<<2|max_i;
}
// If likelihoods fall below this they get squashed to 0
#define TINY 1e-20
static void mc_cal_y_core(bcf_p1aux_t *ma, int beg)
{
double *z[2], *tmp, *pdg;
int _j, last_min, last_max;
assert(beg == 0 || ma->M == ma->n*2);
z[0] = ma->z;
z[1] = ma->zswap;
pdg = ma->pdg;
memset(z[0], 0, sizeof(double) * (ma->M + 1));
memset(z[1], 0, sizeof(double) * (ma->M + 1));
z[0][0] = 1.;
last_min = last_max = 0;
ma->t = 0.;
if (ma->M == ma->n * 2) {
int M = 0;
for (_j = beg; _j < ma->n; ++_j) {
int k, j = _j - beg, _min = last_min, _max = last_max, M0;
double p[3], sum;
M0 = M; M += 2;
// Fetch P(D|g) for this sample
pdg = ma->pdg + _j * 3;
p[0] = pdg[0]; p[1] = 2. * pdg[1]; p[2] = pdg[2];
for (; _min < _max && z[0][_min] < TINY; ++_min) z[0][_min] = z[1][_min] = 0.;
for (; _max > _min && z[0][_max] < TINY; --_max) z[0][_max] = z[1][_max] = 0.;
_max += 2;
if (_min == 0) k = 0, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k];
if (_min <= 1) k = 1, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1];
for (k = _min < 2? 2 : _min; k <= _max; ++k)
z[1][k] = (M0-k+1)*(M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1] + k*(k-1)* p[2] * z[0][k-2];
for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k];
ma->t += log(sum / (M * (M - 1.)));
for (k = _min; k <= _max; ++k) z[1][k] /= sum;
if (_min >= 1) z[1][_min-1] = 0.;
if (_min >= 2) z[1][_min-2] = 0.;
// If we are not on the last sample
if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.;
if (_j == ma->n1 - 1) { // set pop1; ma->n1==-1 when unset
ma->t1 = ma->t;
memcpy(ma->z1, z[1], sizeof(double) * (ma->n1 * 2 + 1));
}
tmp = z[0]; z[0] = z[1]; z[1] = tmp;
last_min = _min; last_max = _max;
}
//for (_j = 0; _j < last_min; ++_j) z[0][_j] = 0.; // TODO: are these necessary?
//for (_j = last_max + 1; _j < ma->M; ++_j) z[0][_j] = 0.;
} else { // this block is very similar to the block above; these two might be merged in future
int j, M = 0;
for (j = 0; j < ma->n; ++j) {
int k, M0, _min = last_min, _max = last_max;
double p[3], sum;
// Fetch P(D|g) for this sample
pdg = ma->pdg + j * 3;
for (; _min < _max && z[0][_min] < TINY; ++_min) z[0][_min] = z[1][_min] = 0.;
for (; _max > _min && z[0][_max] < TINY; --_max) z[0][_max] = z[1][_max] = 0.;
M0 = M;
M += ma->ploidy[j];
if (ma->ploidy[j] == 1) {
p[0] = pdg[0]; p[1] = pdg[2];
_max++;
if (_min == 0) k = 0, z[1][k] = (M0+1-k) * p[0] * z[0][k];
for (k = _min < 1? 1 : _min; k <= _max; ++k)
z[1][k] = (M0+1-k) * p[0] * z[0][k] + k * p[1] * z[0][k-1];
for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k];
ma->t += log(sum / M);
for (k = _min; k <= _max; ++k) z[1][k] /= sum;
if (_min >= 1) z[1][_min-1] = 0.;
// If we are not on the last sample
if (j < ma->n - 1) z[1][_max+1] = 0.;
} else if (ma->ploidy[j] == 2) {
p[0] = pdg[0]; p[1] = 2 * pdg[1]; p[2] = pdg[2];
_max += 2;
if (_min == 0) k = 0, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k];
if (_min <= 1) k = 1, z[1][k] = (M0-k+1) * (M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1];
for (k = _min < 2? 2 : _min; k <= _max; ++k)
z[1][k] = (M0-k+1)*(M0-k+2) * p[0] * z[0][k] + k*(M0-k+2) * p[1] * z[0][k-1] + k*(k-1)* p[2] * z[0][k-2];
for (k = _min, sum = 0.; k <= _max; ++k) sum += z[1][k];
ma->t += log(sum / (M * (M - 1.)));
for (k = _min; k <= _max; ++k) z[1][k] /= sum;
if (_min >= 1) z[1][_min-1] = 0.;
if (_min >= 2) z[1][_min-2] = 0.;
// If we are not on the last sample
if (j < ma->n - 1) z[1][_max+1] = z[1][_max+2] = 0.;
}
tmp = z[0]; z[0] = z[1]; z[1] = tmp;
last_min = _min; last_max = _max;
}
}
if (z[0] != ma->z) memcpy(ma->z, z[0], sizeof(double) * (ma->M + 1));
}
static void mc_cal_y(bcf_p1aux_t *ma)
{
if (ma->n1 > 0 && ma->n1 < ma->n && ma->M == ma->n * 2) { // NB: ma->n1 is ineffective when there are haploid samples
int k;
long double x;
memset(ma->z1, 0, sizeof(double) * (2 * ma->n1 + 1));
memset(ma->z2, 0, sizeof(double) * (2 * (ma->n - ma->n1) + 1));
ma->t1 = ma->t2 = 0.;
mc_cal_y_core(ma, ma->n1);
ma->t2 = ma->t;
memcpy(ma->z2, ma->z, sizeof(double) * (2 * (ma->n - ma->n1) + 1));
mc_cal_y_core(ma, 0);
// rescale z
x = expl(ma->t - (ma->t1 + ma->t2));
for (k = 0; k <= ma->M; ++k) ma->z[k] *= x;
} else mc_cal_y_core(ma, 0);
}
#define CONTRAST_TINY 1e-30
extern double kf_gammaq(double s, double z); // incomplete gamma function for chi^2 test
static inline double chi2_test(int a, int b, int c, int d)
{
double x, z;
x = (double)(a+b) * (c+d) * (b+d) * (a+c);
if (x == 0.) return 1;
z = a * d - b * c;
return kf_gammaq(.5, .5 * z * z * (a+b+c+d) / x);
}
// chi2=(a+b+c+d)(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)]
static inline double contrast2_aux(const bcf_p1aux_t *p1, double sum, int k1, int k2, double x[3])
{
double p = p1->phi[k1+k2] * p1->z1[k1] * p1->z2[k2] / sum * p1->hg[k1][k2];
int n1 = p1->n1, n2 = p1->n - p1->n1;
if (p < CONTRAST_TINY) return -1;
if (.5*k1/n1 < .5*k2/n2) x[1] += p;
else if (.5*k1/n1 > .5*k2/n2) x[2] += p;
else x[0] += p;
return p * chi2_test(k1, k2, (n1<<1) - k1, (n2<<1) - k2);
}
static double contrast2(bcf_p1aux_t *p1, double ret[3])
{
int k, k1, k2, k10, k20, n1, n2;
double sum;
// get n1 and n2
n1 = p1->n1; n2 = p1->n - p1->n1;
if (n1 <= 0 || n2 <= 0) return 0.;
if (p1->hg == 0) { // initialize the hypergeometric distribution
/* NB: the hg matrix may take a lot of memory when there are many samples. There is a way
to avoid precomputing this matrix, but it is slower and quite intricate. The following
computation in this block can be accelerated with a similar strategy, but perhaps this
is not a serious concern for now. */
double tmp = lgamma(2*(n1+n2)+1) - (lgamma(2*n1+1) + lgamma(2*n2+1));
p1->hg = (double**) calloc(2*n1+1, sizeof(double*));
for (k1 = 0; k1 <= 2*n1; ++k1) {
p1->hg[k1] = (double*)calloc(2*n2+1, sizeof(double));
for (k2 = 0; k2 <= 2*n2; ++k2)
p1->hg[k1][k2] = exp(lgamma(k1+k2+1) + lgamma(p1->M-k1-k2+1) - (lgamma(k1+1) + lgamma(k2+1) + lgamma(2*n1-k1+1) + lgamma(2*n2-k2+1) + tmp));
}
}
{ // compute
long double suml = 0;
for (k = 0; k <= p1->M; ++k) suml += p1->phi[k] * p1->z[k];
sum = suml;
}
{ // get the max k1 and k2
double max;
int max_k;
for (k = 0, max = 0, max_k = -1; k <= 2*n1; ++k) {
double x = p1->phi1[k] * p1->z1[k];
if (x > max) max = x, max_k = k;
}
k10 = max_k;
for (k = 0, max = 0, max_k = -1; k <= 2*n2; ++k) {
double x = p1->phi2[k] * p1->z2[k];
if (x > max) max = x, max_k = k;
}
k20 = max_k;
}
{ // We can do the following with one nested loop, but that is an O(N^2) thing. The following code block is much faster for large N.
double x[3], y;
long double z = 0., L[2];
x[0] = x[1] = x[2] = 0; L[0] = L[1] = 0;
for (k1 = k10; k1 >= 0; --k1) {
for (k2 = k20; k2 >= 0; --k2) {
if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break;
else z += y;
}
for (k2 = k20 + 1; k2 <= 2*n2; ++k2) {
if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break;
else z += y;
}
}
ret[0] = x[0]; ret[1] = x[1]; ret[2] = x[2];
x[0] = x[1] = x[2] = 0;
for (k1 = k10 + 1; k1 <= 2*n1; ++k1) {
for (k2 = k20; k2 >= 0; --k2) {
if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break;
else z += y;
}
for (k2 = k20 + 1; k2 <= 2*n2; ++k2) {
if ((y = contrast2_aux(p1, sum, k1, k2, x)) < 0) break;
else z += y;
}
}
ret[0] += x[0]; ret[1] += x[1]; ret[2] += x[2];
if (ret[0] + ret[1] + ret[2] < 0.95) { // in case of bad things happened
ret[0] = ret[1] = ret[2] = 0; L[0] = L[1] = 0;
for (k1 = 0, z = 0.; k1 <= 2*n1; ++k1)
for (k2 = 0; k2 <= 2*n2; ++k2)
if ((y = contrast2_aux(p1, sum, k1, k2, ret)) >= 0) z += y;
if (ret[0] + ret[1] + ret[2] < 0.95) // It seems that this may be caused by floating point errors. I do not really understand why...
z = 1.0, ret[0] = ret[1] = ret[2] = 1./3;
}
return (double)z;
}
}
static double mc_cal_afs(bcf_p1aux_t *ma, double *p_ref_folded, double *p_var_folded)
{
int k;
long double sum = 0., sum2;
double *phi = ma->is_indel? ma->phi_indel : ma->phi;
memset(ma->afs1, 0, sizeof(double) * (ma->M + 1));
mc_cal_y(ma);
// compute AFS
// MP15: is this using equation 20 from doi:10.1093/bioinformatics/btr509?
for (k = 0, sum = 0.; k <= ma->M; ++k)
sum += (long double)phi[k] * ma->z[k];
for (k = 0; k <= ma->M; ++k) {
ma->afs1[k] = phi[k] * ma->z[k] / sum;
if (isnan(ma->afs1[k]) || isinf(ma->afs1[k])) return -1.;
}
// compute folded variant probability
for (k = 0, sum = 0.; k <= ma->M; ++k)
sum += (long double)(phi[k] + phi[ma->M - k]) / 2. * ma->z[k];
for (k = 1, sum2 = 0.; k < ma->M; ++k)
sum2 += (long double)(phi[k] + phi[ma->M - k]) / 2. * ma->z[k];
*p_var_folded = sum2 / sum;
*p_ref_folded = (phi[k] + phi[ma->M - k]) / 2. * (ma->z[ma->M] + ma->z[0]) / sum;
// the expected frequency
for (k = 0, sum = 0.; k <= ma->M; ++k) {
ma->afs[k] += ma->afs1[k];
sum += k * ma->afs1[k];
}
return sum / ma->M;
}
int bcf_p1_cal(call_t *call, bcf1_t *b, int do_contrast, bcf_p1aux_t *ma, bcf_p1rst_t *rst)
{
int i, k;
long double sum = 0.;
ma->is_indel = bcf_is_snp(b) ? 0 : 1;
rst->perm_rank = -1;
ma->PL = call->PLs;
ma->PL_len = call->nPLs / b->n_sample;
if (b->n_allele < 2) return -1; // FIXME: find a better solution
rst->rank0 = cal_pdg(b, ma);
rst->f_exp = mc_cal_afs(ma, &rst->p_ref_folded, &rst->p_var_folded);
rst->p_ref = ma->afs1[ma->M];
for (k = 0, sum = 0.; k < ma->M; ++k)
sum += ma->afs1[k];
rst->p_var = (double)sum;
{ // compute the allele count
double max = -1;
rst->ac = -1;
for (k = 0; k <= ma->M; ++k)
if (max < ma->z[k]) max = ma->z[k], rst->ac = k;
rst->ac = ma->M - rst->ac;
}
// calculate f_flat and f_em
for (k = 0, sum = 0.; k <= ma->M; ++k)
sum += (long double)ma->z[k];
rst->f_flat = 0.;
for (k = 0; k <= ma->M; ++k) {
double p = ma->z[k] / sum;
rst->f_flat += k * p;
}
rst->f_flat /= ma->M;
{ // estimate equal-tail credible interval (95% level)
int l, h;
double p;
for (i = 0, p = 0.; i <= ma->M; ++i)
if (p + ma->afs1[i] > 0.025) break;
else p += ma->afs1[i];
l = i;
for (i = ma->M, p = 0.; i >= 0; --i)
if (p + ma->afs1[i] > 0.025) break;
else p += ma->afs1[i];
h = i;
rst->cil = (double)(ma->M - h) / ma->M; rst->cih = (double)(ma->M - l) / ma->M;
}
if (ma->n1 > 0) { // compute LRT
double max0, max1, max2;
for (k = 0, max0 = -1; k <= ma->M; ++k)
if (max0 < ma->z[k]) max0 = ma->z[k];
for (k = 0, max1 = -1; k <= ma->n1 * 2; ++k)
if (max1 < ma->z1[k]) max1 = ma->z1[k];
for (k = 0, max2 = -1; k <= ma->M - ma->n1 * 2; ++k)
if (max2 < ma->z2[k]) max2 = ma->z2[k];
rst->lrt = log(max1 * max2 / max0);
rst->lrt = rst->lrt < 0? 1 : kf_gammaq(.5, rst->lrt);
} else rst->lrt = -1.0;
rst->cmp[0] = rst->cmp[1] = rst->cmp[2] = rst->p_chi2 = -1.0;
if (do_contrast && rst->p_var > 0.5) // skip contrast2() if the locus is a strong non-variant
rst->p_chi2 = contrast2(ma, rst->cmp);
return 0;
}
void bcf_p1_dump_afs(bcf_p1aux_t *ma)
{
int k;
fprintf(stderr, "[afs]");
for (k = 0; k <= ma->M; ++k)
fprintf(stderr, " %d:%.3lf", k, ma->afs[ma->M - k]);
fprintf(stderr, "\n");
memset(ma->afs, 0, sizeof(double) * (ma->M + 1));
}