From 37c3622c2933b26eb0b735b5ddee88ee9eccef9a Mon Sep 17 00:00:00 2001 From: Kwankyu Lee Date: Wed, 1 May 2024 09:57:31 +0900 Subject: [PATCH] Remove long doctests from jacobian_khuri_makdisi.py --- .../function_field/jacobian_khuri_makdisi.py | 52 +++++++++---------- 1 file changed, 26 insertions(+), 26 deletions(-) diff --git a/src/sage/rings/function_field/jacobian_khuri_makdisi.py b/src/sage/rings/function_field/jacobian_khuri_makdisi.py index eeb2ae12fd6..436ddb6ad32 100644 --- a/src/sage/rings/function_field/jacobian_khuri_makdisi.py +++ b/src/sage/rings/function_field/jacobian_khuri_makdisi.py @@ -496,20 +496,20 @@ class JacobianGroupEmbedding(Map): EXAMPLES:: - sage: k = GF(7) + sage: k = GF(5) sage: P2. = ProjectiveSpace(k, 2) - sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2) + sage: C = Curve(x^3 + z^3 - y^2*z, P2) sage: h = C.function(y/x).divisor_of_poles() sage: J = C.jacobian(model='km_large', base_div=h) sage: G1 = J.group() - sage: K = k.extension(3) - sage: G3 = J.group(K) - sage: G3.coerce_map_from(G1) + sage: K = k.extension(2) + sage: G2 = J.group(K) + sage: G2.coerce_map_from(G1) Jacobian group embedding map: From: Group of rational points of Jacobian - over Finite Field of size 7 (Khuri-Makdisi large model) + over Finite Field of size 5 (Khuri-Makdisi large model) To: Group of rational points of Jacobian - over Finite Field in z3 of size 7^3 (Khuri-Makdisi large model) + over Finite Field in z2 of size 5^2 (Khuri-Makdisi large model) """ def __init__(self, base_group, extension_group): """ @@ -517,15 +517,15 @@ def __init__(self, base_group, extension_group): TESTS:: - sage: k = GF(7) + sage: k = GF(5) sage: P2. = ProjectiveSpace(k, 2) - sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2) + sage: C = Curve(x^3 + z^3 - y^2*z, P2) sage: h = C.function(y/x).divisor_of_poles() sage: J = C.jacobian(model='km_large', base_div=h) sage: G1 = J.group() - sage: K = k.extension(3) - sage: G3 = J.group(K) - sage: map = G3.coerce_map_from(G1) + sage: K = k.extension(2) + sage: G2 = J.group(K) + sage: map = G2.coerce_map_from(G1) sage: TestSuite(map).run(skip=['_test_category', '_test_pickling']) """ F_ext = extension_group._function_field @@ -541,20 +541,20 @@ def _repr_type(self): TESTS:: - sage: k = GF(7) + sage: k = GF(5) sage: P2. = ProjectiveSpace(k, 2) - sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2) + sage: C = Curve(x^3 + z^3 - y^2*z, P2) sage: h = C.function(y/x).divisor_of_poles() sage: J = C.jacobian(model='km_large', base_div=h) sage: G1 = J.group() - sage: K = k.extension(3) - sage: G3 = J.group(K) - sage: G3.coerce_map_from(G1) # indirect doctest + sage: K = k.extension(2) + sage: G2 = J.group(K) + sage: G2.coerce_map_from(G1) # indirect doctest Jacobian group embedding map: From: Group of rational points of Jacobian - over Finite Field of size 7 (Khuri-Makdisi large model) + over Finite Field of size 5 (Khuri-Makdisi large model) To: Group of rational points of Jacobian - over Finite Field in z3 of size 7^3 (Khuri-Makdisi large model) + over Finite Field in z2 of size 5^2 (Khuri-Makdisi large model) """ return 'Jacobian group embedding' @@ -564,16 +564,16 @@ def _call_(self, x): TESTS:: - sage: k = GF(7) + sage: k = GF(5) sage: P2. = ProjectiveSpace(k, 2) - sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2) + sage: C = Curve(x^3 + z^3 - y^2*z, P2) sage: h = C.function(y/x).divisor_of_poles() sage: J = C.jacobian(model='km_large', base_div=h) sage: G1 = J.group() - sage: K = k.extension(3) - sage: G3 = J.group(K) - sage: m = G3.coerce_map_from(G1) - sage: m(G1.zero()) == G3.zero() + sage: K = k.extension(2) + sage: G2 = J.group(K) + sage: m = G2.coerce_map_from(G1) + sage: m(G1.zero()) == G2.zero() True """ w = (x._w).change_ring(self._K_ext) @@ -895,7 +895,7 @@ def __iter__(self): sage: b = C([0,0,1]).place() sage: J = C.jacobian(model='km_large', base_div=3*b) sage: G = J.group() - sage: len([pt for pt in G]) + sage: len([pt for pt in G]) # long time 11 """ d0 = self._base_div.degree()